
THEORY OF NUMBERS
CONGRUENCES

A reduced set of residues (mod m) is a set of φ(m) numbers, one from each
of the residue classes relatively prime to m.
e.g. m = 10 C.S.R.=0 ± 1 ± 2 ± 3 ± 4 ± 5 R.S.R=±1 ± 3

Theorem Suppose (k, m) = 1 then if x runs through a C.S.R. or R.S.R. so
does kx

Proof (i) kx takes m values and no two are congruent mod m since kx1 ≡
kx2 ⇒ x1 = x2 as (k, m) = 1

(ii) kx takes φ(m) values, mutually uncongruent mod m, as m (i), and
(kx, m) = (x, m) = 1 as (k, m) = 1.

Theorem (Fermat-Euler) aφ(m) = 1 mod m if (a, m) = 1

Proof Let x1, x2 . . . xφ(m) be a R.S.R. mod m. By the previous theorem,
ax1, ax2, . . . axφ(m) is a R.S.R mod m. Hence these numbers are con-
gruent to x1x2 . . . xφ(m) in some order. Therefore

ax1ax2 . . . axφ(m) ≡ x1x2 . . . xφ(m) (m)

Therefore aφ(m) ≡ 1

Corollary ap−1 ≡ 1 mod p if a 6≡ 0 mod p

ap ≡ a mod p for all a.

Linear congruences ax ≡ b mod m (a 6≡ 0 mod m). N.S.C. for solubility
are the N.S.C. for integral solutions x, y of ax−my = b i.e. (a, m)|b.

General solution Suppose x0, y0 is a particular solution of ax −my = b

and x, y the general solutions therefore

a(x0 − x)−m(y0 − y) = 0 (1)

therefore m′|x− x0 where m
′ = m

(a, m)
and a′|y − y0 where a

′ = a
(a, m)

therefore

x = x 0 +m′t

y = y0 + a′l

Substituting m(1) gives t = l, therefore
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x = x0 +m′t

y = y0 + a′t

giving different solutions for t = 1, 2, . . . m
m′
, all other solutions belong-

ing to one of these residue classes mod m therefore ∃(a, m) solutions.

The Chinese Remainder Theorem If every pair from (m1, . . . ,mr) is rel-
atively prime, the simultaneous congruences

x ≡ a1 mod m1, . . . x ≡ ar mod mr

have a solution which is unique mod m1, . . .mr.

Proof Put

Mj =

∏r
i=1mi

mj

j = 1, 2, . . . , r

Choose ξj such that Mjξj ≡ aj mod mj

This is possible since (Mj, mj) = 1. Note thatMjξj = 0 modmi, i 6= j

Take x =M1ξ1+M2ξ2+. . .+Mrξr. Then x ≡ aj modmj j = 1, 2, . . . r.

Suppose x1, x2 are solutions. Then x1 ≡ ai mod mi i = 1, 2, . . . r, x2 ≡
ai mod mi i = 1, 2, . . . , r. Therefore x1− x2 ≡ 0 mod mi, i = 1, 2, . . . r
therefore x1 − x2 ≡ 0 mod m1m2 . . .mr.

Corollary The congruence P (x) ≡ 0 mod m is equivalent to the simultane-
ous congruences P (x) ≡ 0 mod pri

i i = 1, 2, . . . n.

Theorem Suppose (a, b) = 1.

Suppose x runs through a

{

C.S.R.

R.S.R

}

mod a

Suppose y runs through a

{

C.S.R.

R.S.R

}

mod b

Then bx+ ay runs through a

{

C.S.R.

R.S.R

}

mod ab.

Proof C.S.R

There are ab values of bx+ ay and no two are congruent mod ab, for if
bx + ay ≡ bx′ + ay′ mod ab then bx ≡ bx′ mod a and ay = ay′ mod b
since (ab) = 1 therefore x = x′ mod a and y = y′ mod b.

R.S.R

No two values of bx + ay are congruent mod ab as above. All values
of bx + ay are relatively prime to ab, for suppose p|ax + by| and p|ab.
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Then p|a or p|b so suppose p|a. p 6 |b as (a, b) = 1 therefore p|x. But
(a, x) = 1 as x ∈ R.S.R. mod a

Conversely every number m relatively prime to ab is congruent to some
bx+ ay mod ab for if (ab, m) = 1 choose x, y so that

bx ≡ m mod a
ay ≡ m mod b

{

unique as (a, b) = 1 and (a, x) = 1
unique as (a, b) = 1 and (b, y) = 1.

Therefore bx+ ay ≡ m mod a and mod b and so mod ab as (a, b) = 1.

Corollary π(a, b) = φ(a)φ(b) if (a, b) = 1.

Wilson’s Theorem p is prime ⇔ (p− 1)! ≡ −1 mod p.

Proof (i) (p− 1)! ≡ −1 mod p⇒ (p− 1)! + 1 = np for some integer n.

Now none of the numbers 2, 3, . . . p − 1 divides (p − 1)! + 1, for
each of them leaves remainder 1 and so 2, 3, . . . p−1 do not divide
p. So p is prime.

(ii) p = 2 gives 1! ≡ −1 mod 2, p = 3 gives 2! = −1 mod 3.

Suppose p > 3. For every x 6≡ 0 mod p∃ a unique x′ mod p such
that xx′ ≡ 1 mod p. If we also have x ≡ x′ mod p then x2 ≡ 1
mod p.

i.e. p|x2 − 1 i.e.p|x− 1 or x+ 1 therefore x ≡ ±1 mod p.

Thus in the product 2, 3, . . . p− 2 the factors can be associated in
pairs, the product of each pair being ≡ 1 mod p.

Hence (p− 2)! ≡ 1 mod p therefore (p− 1)! ≡ p− 1 ≡ −1 mod p.

The residue classes mod p form a finite field.

Definition Let (a,m) = 1. Suppose f is the least positive integer for which
af ≡ 1 mod m. Then we say that a belongs to the exponent f mod m.

Note that as ≡ 1 mod m⇔ f |s

(i) f |s⇒ s = qf

as = (af )q ≡ 1q ≡ 1 mod m.

(ii) as ≡ 1 mod m
s = qf + r o ≤ r < f

Therefore (af )q.ar ≡ 1 mod m

therefore ar ≡ 1 mod m

therefore r = 0 by definition of f and sof |s

In particular f |φ(m) since aφ(m) ≡ 1 mod m.
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Theorem Let p be prime and let f be a divisor of p − 1. Then among a
R.S.R. mod p there are exactly φ(f) elements belonging to the exponent
f mod p.

In particular there are π(p − 1) elements belonging to the exponent
p− 1 mod p: sich an element is known as a primitive root mod p.

Proof Let ψ(f) be the number of elements belonging to the exponent f . We
prove

(1) ψ(f) = 0 or φ(f)

Suppose f |p − 1 and suppose ψ(f) 6= 0. Then ∃a, belonging to
exponent f . 1, a, a2 . . . af−1 are uncongruent mod p, but all satisfy
xf ≡ 1 mod p. So they are all solutions of xf ≡ 1

Thus the numbers belonging to exponent f are to be found among
these.

We show that a′′ belongs to exp f ⇔ (v, f = 1. Suppose a′′

belongs to exp f ′(: f ′|f)

(i) (v, f) = 1 Suppose (a′′)f ≡ 1 mod p then a′′f ≡ 1 mod p but
a belongs to exp f and so f |vf ′ therefore ‖f ′ so f = f ′.

(ii) (v, f) = d > 1

(av)
f

d ≡ (af )
v
d ≡ 1 mod p since a belongs to exp f .

Thus a′′ doesn’t belong to exp f since f

d
< f. Hence ψ(f) =

φ(f).
We now prove

(2)
∑

f |p−1 ψ(f) = p− 1

Every residue 6≡ 0 mod p belongs to exactly one exponent f and
af ≡ 1 mod p⇔ f |p− 1 for ap−1 ≡ 1 by Fermats theorem.

But
∑

f |p−1 φ(f) = p− 1

So
∑

f |p−1 [φ(f)− ψ(f)] = 0, [φ(f)− ψ(f)] ≥ 0 by (1) therefore
φ(f) = ψ(f).

Indices Suppose g is a primitive root mod p, p > 2.

Then g0, g1, g2, . . . , gp−2 constitute an R.S.R. mod p.

For each a satisfying (a, p) = 1∃ a unique integer r such that gr ≡ a

mod p 0 ≤ r ≤ p− 2

We write r = mdga.

Then a ≡ b mod p⇔ mdga = mdgb
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mdga
n = nmdga

mdgab = mdga+mdgb

mdga = mdgg;mdg′a











mod p− 1

md1 = 0
md− 1 = p−1

2
, for gp−1 ≡ 0 so

(

g
p−1

2 − 1
) (

g
p−1

2 + 1
)

≡ 0 but g
p−1

2 6≡ 1

as g is a primitive root so g
p−1

2 ≡ −1

Example

p = 13 g = 2 N Index
1 0
2 1
4 2
8 3
3 4
6 5
12 6
11 7
9 8
5 9
10 10
7 11

Example
∑p−1

n=1 n
s ≡

{

0 mod p if s 6≡ 0 mod p− 1
−1 mod p if s ≡ 0 mod p− 1
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