THEORY OF NUMBERS

CONGRUENCES
A reduced set of residues $(\bmod m)$ is a set of $\phi(m)$ numbers, one from each of the residue classes relatively prime to m.
e.g. $m=10$ C.S.R. $=0 \pm 1 \pm 2 \pm 3 \pm 4 \pm 5$ R.S.R $= \pm 1 \pm 3$

Theorem Suppose $(k, m)=1$ then if x runs through a C.S.R. or R.S.R. so does $k x$

Proof (i) $k x$ takes m values and no two are congruent mod m since $k x_{1} \equiv$ $k x_{2} \Rightarrow x_{1}=x_{2}$ as $(k, m)=1$
(ii) $k x$ takes $\phi(m)$ values, mutually uncongruent $\bmod m$, as m (i), and $(k x, m)=(x, m)=1$ as $(k, m)=1$.

Theorem (Fermat-Euler) $a^{\phi(m)}=1 \bmod m$ if $(a, m)=1$
Proof Let $x_{1}, x_{2} \ldots x_{\phi(m)}$ be a R.S.R. mod m. By the previous theorem, $a x_{1}, a x_{2}, \ldots a x_{\phi(m)}$ is a R.S.R mod m. Hence these numbers are congruent to $x_{1} x_{2} \ldots x_{\phi(m)}$ in some order. Therefore

$$
a x_{1} a x_{2} \ldots a x_{\phi(m)} \equiv x_{1} x_{2} \ldots x_{\phi(m)}(m)
$$

Therefore $a^{\phi(m)} \equiv 1$
Corollary $a^{p-1} \equiv 1 \bmod p$ if $a \not \equiv 0 \bmod p$ $a^{p} \equiv a \bmod p$ for all a.

Linear congruences $a x \equiv b \bmod m(a \not \equiv 0 \bmod m)$. N.S.C. for solubility are the N.S.C. for integral solutions x, y of $a x-m y=b$ i.e. $(a, m) \mid b$.

General solution Suppose x_{0}, y_{0} is a particular solution of $a x-m y=b$ and x, y the general solutions therefore

$$
\begin{equation*}
a\left(x_{0}-x\right)-m\left(y_{0}-y\right)=0 \tag{1}
\end{equation*}
$$

therefore $m^{\prime} \mid x-x_{0}$ where $m^{\prime}=\frac{m}{(a, m)}$ and $a^{\prime} \mid y-y_{0}$ where $a^{\prime}=\frac{a}{(a, m)}$ therefore
$x=x_{-} 0+m^{\prime} t$
$y=y_{0}+a^{\prime} l$
Substituting $m(1)$ gives $t=l$, therefore

$$
x=x_{0}+m^{\prime} t
$$

$y=y_{0}+a^{\prime} t$
giving different solutions for $t=1,2, \ldots \frac{m}{m^{\prime}}$, all other solutions belonging to one of these residue classes mod m therefore $\exists(a, m)$ solutions.

The Chinese Remainder Theorem If every pair from $\left(m_{1}, \ldots, m_{r}\right)$ is relatively prime, the simultaneous congruences
$x \equiv a_{1} \bmod m_{1}, \ldots x \equiv a_{r} \bmod m_{r}$
have a solution which is unique $\bmod m_{1}, \ldots m_{r}$.
Proof Put

$$
M_{j}=\frac{\prod_{i=1}^{r} m_{i}}{m_{j}} j=1,2, \ldots, r
$$

Choose ξ_{j} such that $M_{j} \xi_{j} \equiv a_{j} \bmod m_{j}$
This is possible since $\left(M_{j}, m_{j}\right)=1$. Note that $M_{j} \xi_{j}=0 \bmod m_{i}, i \neq j$ Take $x=M_{1} \xi_{1}+M_{2} \xi_{2}+\ldots+M_{r} \xi_{r}$. Then $x \equiv a_{j} \bmod m_{j} j=1,2, \ldots r$. Suppose x_{1}, x_{2} are solutions. Then $x_{1} \equiv a_{i} \bmod m_{i} i=1,2, \ldots r, x_{2} \equiv$ $a_{i} \bmod m_{i} i=1,2, \ldots, r$. Therefore $x_{1}-x_{2} \equiv 0 \bmod m_{i}, i=1,2, \ldots r$ therefore $x_{1}-x_{2} \equiv 0 \bmod m_{1} m_{2} \ldots m_{r}$.

Corollary The congruence $P(x) \equiv 0 \bmod m$ is equivalent to the simultaneous congruences $P(x) \equiv 0 \bmod p_{i}^{r_{i}} i=1,2, \ldots n$.

Theorem Suppose $(a, b)=1$.
Suppose x runs through a $\left\{\begin{array}{c}\text { C.S.R. } \\ \text { R.S.R }\end{array}\right\} \bmod a$
Suppose y runs through a $\left\{\begin{array}{c}\text { C.S.R. } \\ \text { R.S.R }\end{array}\right\} \bmod b$
Then $b x+a y$ runs through a $\left\{\begin{array}{c}C . S . R . \\ R . S . R\end{array}\right\} \bmod a b$.

Proof C.S.R

There are $a b$ values of $b x+a y$ and no two are congruent mod $a b$, for if $b x+a y \equiv b x^{\prime}+a y^{\prime} \bmod a b$ then $b x \equiv b x^{\prime} \bmod a$ and $a y=a y^{\prime} \bmod b$ since $(a b)=1$ therefore $x=x^{\prime} \bmod a$ and $y=y^{\prime} \bmod b$.
R.S.R

No two values of $b x+a y$ are congruent $\bmod a b$ as above. All values of $b x+a y$ are relatively prime to $a b$, for suppose $p|a x+b y|$ and $p \mid a b$.

Then $p \mid a$ or $p \mid b$ so suppose $p \mid a . p \nmid b$ as $(a, b)=1$ therefore $p \mid x$. But $(a, x)=1$ as $x \in$ R.S.R. $\bmod a$
Conversely every number m relatively prime to $a b$ is congruent to some $b x+a y \bmod a b$ for if $(a b, m)=1$ choose x, y so that

$$
\begin{array}{ll}
b x \equiv m & \bmod a \\
a y \equiv m & \bmod b
\end{array}\left\{\begin{array}{c}
\text { unique as }(a, b)=1 \text { and }(a, x)=1 \\
\text { unique as }(a, b)=1 \text { and }(b, y)=1
\end{array}\right.
$$

Therefore $b x+a y \equiv m \bmod a$ and $\bmod b$ and so $\bmod a b$ as $(a, b)=1$.
Corollary $\pi(a, b)=\phi(a) \phi(b)$ if $(a, b)=1$.
Wilson's Theorem p is prime $\Leftrightarrow(p-1)!\equiv-1 \bmod p$.
Proof (i) $(p-1)!\equiv-1 \bmod p \Rightarrow(p-1)!+1=n p$ for some integer n.
Now none of the numbers $2,3, \ldots p-1$ divides $(p-1)$! +1 , for each of them leaves remainder 1 and so $2,3, \ldots p-1$ do not divide p. So p is prime.
(ii) $p=2$ gives $1!\equiv-1 \bmod 2, p=3$ gives $2!=-1 \bmod 3$. Suppose $p>3$. For every $x \not \equiv 0 \bmod p \exists$ a unique $x^{\prime} \bmod p$ such that $x x^{\prime} \equiv 1 \bmod p$. If we also have $x \equiv x^{\prime} \bmod p$ then $x^{2} \equiv 1$ $\bmod p$.
i.e. $p \mid x^{2}-1$ i.e. $p \mid x-1$ or $x+1$ therefore $x \equiv \pm 1 \bmod p$.

Thus in the product $2,3, \ldots p-2$ the factors can be associated in pairs, the product of each pair being $\equiv 1 \bmod p$.
Hence $(p-2)!\equiv 1 \bmod p$ therefore $(p-1)!\equiv p-1 \equiv-1 \bmod p$.
The residue classes $\bmod p$ form a finite field.
Definition Let $(a, m)=1$. Suppose f is the least positive integer for which $a^{f} \equiv 1 \bmod m$. Then we say that a belongs to the exponent $f \bmod m$.
Note that $a^{s} \equiv 1 \bmod m \Leftrightarrow f \mid s$
(i) $f \mid s \Rightarrow s=q f$
$a^{s}=\left(a^{f}\right)^{q} \equiv 1^{q} \equiv 1 \bmod m$.
(ii) $a^{s} \equiv 1 \bmod m$
$s=q f+r o \leq r<f$
Therefore $\left(a^{f}\right)^{q} \cdot a^{r} \equiv 1 \bmod m$
therefore $a^{r} \equiv 1 \bmod m$
therefore $r=0$ by definition of f and sof $\mid s$
In particular $f \mid \phi(m)$ since $a^{\phi(m)} \equiv 1 \bmod m$.

Theorem Let p be prime and let f be a divisor of $p-1$. Then among a R.S.R. $\bmod p$ there are exactly $\phi(f)$ elements belonging to the exponent $f \bmod p$.
In particular there are $\pi(p-1)$ elements belonging to the exponent $p-1 \bmod p:$ sich an element is known as a primitive root $\bmod p$.

Proof Let $\psi(f)$ be the number of elements belonging to the exponent f. We prove
(1) $\psi(f)=0$ or $\phi(f)$

Suppose $f \mid p-1$ and suppose $\psi(f) \neq 0$. Then $\exists a$, belonging to exponent $f .1, a, a^{2} \ldots a^{f-1}$ are uncongruent $\bmod p$, but all satisfy $x^{f} \equiv 1 \bmod p$. So they are all solutions of $x^{f} \equiv 1$
Thus the numbers belonging to exponent f are to be found among these.
We show that $a^{\prime \prime}$ belongs to $\exp f \Leftrightarrow\left(v, f=1\right.$. Suppose $a^{\prime \prime}$ belongs to $\exp f^{\prime}\left(: f^{\prime} \mid f\right)$
(i) $(v, f)=1$ Suppose $\left(a^{\prime \prime}\right)^{f} \equiv 1 \bmod p$ then $a^{\prime \prime} f \equiv 1 \bmod p$ but a belongs to $\exp f$ and so $f \mid v f^{\prime}$ therefore $\| f^{\prime}$ so $f=f^{\prime}$.
(ii) $(v, f)=d>1$ $\left(a^{v}\right)^{\frac{f}{d}} \equiv\left(a^{f}\right)^{\frac{v}{d}} \equiv 1 \bmod p$ since a belongs to $\exp f$. Thus $a^{\prime \prime}$ doesn't belong to $\exp f$ since $\frac{f}{d}<f$. Hence $\psi(f)=$ $\phi(f)$.
We now prove
(2) $\sum_{f \mid p-1} \psi(f)=p-1$

Every residue $\not \equiv 0 \bmod p$ belongs to exactly one exponent f and $a^{f} \equiv 1 \bmod p \Leftrightarrow f \mid p-1$ for $a^{p-1} \equiv 1$ by Fermats theorem.
But $\sum_{f \mid p-1} \phi(f)=p-1$
So $\sum_{f \mid p-1}[\phi(f)-\psi(f)]=0,[\phi(f)-\psi(f)] \geq 0$ by (1) therefore $\phi(f)=\psi(f)$.

Indices Suppose g is a primitive root $\bmod p, p>2$.
Then $g^{0}, g^{1}, g^{2}, \ldots, g^{p-2}$ constitute an R.S.R. $\bmod p$.
For each a satisfying $(a, p)=1 \exists$ a unique integer r such that $g^{r} \equiv a$ $\bmod p 0 \leq r \leq p-2$

We write $r=m d_{g} a$.
Then $a \equiv b \bmod p \Leftrightarrow m d_{g} a=m d_{g} b$

$$
\left.\begin{array}{c}
m d_{g} a^{n}=n m d_{g} a \\
m d_{g} a b=m d_{g} a+m d_{g} b \\
m d_{g} a=m d_{g} g ; m d_{g^{\prime}} a
\end{array}\right\} \bmod p-1
$$

$$
m d 1=0
$$

$$
m d-1=\frac{p-1}{2}, \text { for } g^{p-1} \equiv 0 \text { so }\left(g^{\frac{p-1}{2}}-1\right)\left(g^{\frac{p-1}{2}}+1\right) \equiv 0 \text { but } g^{\frac{p-1}{2}} \not \equiv 1
$$

$$
\text { as } g \text { is a primitive root so } g^{\frac{p-1}{2}} \equiv-1
$$

Example

$p=13$	$g=2$	N	Index
		1	0
			1
		4	2
		8	3
		3	4
		6	5
		12	6
		11	7
		9	8
		5	9
		10	10
			11

Example $\sum_{n=1}^{p-1} n^{s} \equiv\left\{\begin{array}{cc}0 & \bmod p \text { if } s \not \equiv 0 \bmod p-1 \\ -1 & \bmod p \text { if } s \equiv 0 \bmod p-1\end{array}\right.$

