THEORY OF NUMBERS CONGRUENCES

A reduced set of residues (mod m) is a set of $\phi(m)$ numbers, one from each of the residue classes relatively prime to m.

e.g. m = 10 C.S.R.=0 $\pm 1 \pm 2 \pm 3 \pm 4 \pm 5$ R.S.R= $\pm 1 \pm 3$

- **Theorem** Suppose (k, m) = 1 then if x runs through a C.S.R. or R.S.R. so does kx
- **Proof (i)** kx takes m values and no two are congruent mod m since $kx_1 \equiv kx_2 \Rightarrow x_1 = x_2$ as (k, m) = 1
 - (ii) kx takes $\phi(m)$ values, mutually uncongruent mod m, as m (i), and (kx, m) = (x, m) = 1 as (k, m) = 1.

Theorem (Fermat-Euler) $a^{\phi(m)} = 1 \mod m$ if (a, m) = 1

Proof Let $x_1, x_2 \dots x_{\phi(m)}$ be a R.S.R. mod m. By the previous theorem, $ax_1, ax_2, \dots ax_{\phi(m)}$ is a R.S.R mod m. Hence these numbers are congruent to $x_1x_2 \dots x_{\phi(m)}$ in some order. Therefore

$$ax_1ax_2\dots ax_{\phi(m)} \equiv x_1x_2\dots x_{\phi(m)} \ (m)$$

Therefore $a^{\phi(m)} \equiv 1$

Corollary $a^{p-1} \equiv 1 \mod p$ if $a \not\equiv 0 \mod p$

 $a^p \equiv a \mod p$ for all a.

- **Linear congruences** $ax \equiv b \mod m$ $(a \not\equiv 0 \mod m)$. N.S.C. for solubility are the N.S.C. for integral solutions x, y of ax my = b i.e. (a, m)|b.
- **General solution** Suppose x_0 , y_0 is a particular solution of ax my = band x, y the general solutions therefore

$$a(x_0 - x) - m(y_0 - y) = 0$$
(1)

therefore $m'|x - x_0$ where $m' = \frac{m}{(a, m)}$ and $a'|y - y_0$ where $a' = \frac{a}{(a, m)}$ therefore

 $\begin{aligned} x &= x_0 + m't \\ y &= y_0 + a'l \end{aligned}$ Substituting m(1) gives t = l, therefore $\begin{aligned} x &= x_0 + m't\\ y &= y_0 + a't \end{aligned}$

giving different solutions for $t = 1, 2, ..., \frac{m}{m'}$, all other solutions belonging to one of these residue classes mod m therefore $\exists (a, m)$ solutions.

The Chinese Remainder Theorem If every pair from (m_1, \ldots, m_r) is relatively prime, the simultaneous congruences

 $x \equiv a_1 \mod m_1, \dots x \equiv a_r \mod m_r$

have a solution which is unique mod m_1, \ldots, m_r .

Proof Put

$$M_j = \frac{\prod_{i=1}^r m_i}{m_j} \ j = 1, 2, \dots, r$$

Choose ξ_j such that $M_j \xi_j \equiv a_j \mod m_j$

This is possible since $(M_j, m_j) = 1$. Note that $M_j \xi_j = 0 \mod m_i$, $i \neq j$ Take $x = M_1 \xi_1 + M_2 \xi_2 + \ldots + M_r \xi_r$. Then $x \equiv a_j \mod m_j \ j = 1, 2, \ldots r$. Suppose x_1, x_2 are solutions. Then $x_1 \equiv a_i \mod m_i \ i = 1, 2, \ldots r$, $x_2 \equiv a_i \mod m_i \ i = 1, 2, \ldots, r$. Therefore $x_1 - x_2 \equiv 0 \mod m_i$, $i = 1, 2, \ldots, r$ therefore $x_1 - x_2 \equiv 0 \mod m_1 m_2 \ldots m_r$.

Corollary The congruence $P(x) \equiv 0 \mod m$ is equivalent to the simultaneous congruences $P(x) \equiv 0 \mod p_i^{r_i}$ i = 1, 2, ..., n.

Theorem Suppose (a, b) = 1.

Suppose x runs through a
$$\begin{cases} C.S.R.\\ R.S.R \end{cases}$$
 mod a
Suppose y runs through a $\begin{cases} C.S.R.\\ R.S.R \end{cases}$ mod b
Then $bx + ay$ runs through a $\begin{cases} C.S.R.\\ R.S.R \end{cases}$ mod ab.

Proof C.S.R

There are ab values of bx + ay and no two are congruent mod ab, for if $bx + ay \equiv bx' + ay' \mod ab$ then $bx \equiv bx' \mod a$ and $ay = ay' \mod b$ since (ab) = 1 therefore $x = x' \mod a$ and $y = y' \mod b$.

R.S.R

No two values of bx + ay are congruent mod ab as above. All values of bx + ay are relatively prime to ab, for suppose p|ax + by| and p|ab.

Then p|a or p|b so suppose p|a. $p \not| b$ as (a, b) = 1 therefore p|x. But (a, x) = 1 as $x \in \text{R.S.R. mod } a$

Conversely every number m relatively prime to ab is congruent to some $bx + ay \mod ab$ for if (ab, m) = 1 choose x, y so that

 $\begin{array}{ll} bx\equiv m \mod a \\ ay\equiv m \mod b \end{array} \left\{ \begin{array}{l} \text{unique as } (a,\ b)=1 \text{ and } (a,\ x)=1 \\ \text{unique as } (a,\ b)=1 \text{ and } (b,\ y)=1. \end{array} \right.$

Therefore $bx + ay \equiv m \mod a$ and $\mod b$ and so $\mod ab$ as (a, b) = 1.

Corollary $\pi(a, b) = \phi(a)\phi(b)$ if (a, b) = 1.

Wilson's Theorem p is prime $\Leftrightarrow (p-1)! \equiv -1 \mod p$.

- **Proof (i)** $(p-1)! \equiv -1 \mod p \Rightarrow (p-1)! + 1 = np$ for some integer n. Now none of the numbers $2, 3, \ldots p - 1$ divides (p-1)! + 1, for each of them leaves remainder 1 and so $2, 3, \ldots p - 1$ do not divide p. So p is prime.
 - (ii) p = 2 gives $1! \equiv -1 \mod 2$, p = 3 gives $2! = -1 \mod 3$.

Suppose p > 3. For every $x \not\equiv 0 \mod p \exists$ a unique $x' \mod p$ such that $xx' \equiv 1 \mod p$. If we also have $x \equiv x' \mod p$ then $x^2 \equiv 1 \mod p$.

i.e. $p|x^2 - 1$ i.e.p|x - 1 or x + 1 therefore $x \equiv \pm 1 \mod p$.

Thus in the product $2, 3, \ldots p - 2$ the factors can be associated in pairs, the product of each pair being $\equiv 1 \mod p$.

Hence $(p-2)! \equiv 1 \mod p$ therefore $(p-1)! \equiv p-1 \equiv -1 \mod p$. The residue classes mod p form a finite field.

- **Definition** Let (a, m) = 1. Suppose f is the least positive integer for which $a^f \equiv 1 \mod m$. Then we say that a belongs to the exponent $f \mod m$. Note that $a^s \equiv 1 \mod m \Leftrightarrow f|s$
 - (i) $f|s \Rightarrow s = qf$ $a^s = (a^f)^q \equiv 1^q \equiv 1 \mod m.$
 - (ii) $a^s \equiv 1 \mod m$ $s = qf + r \ o \leq r < f$ Therefore $(a^f)^q . a^r \equiv 1 \mod m$ therefore $a^r \equiv 1 \mod m$ therefore r = 0 by definition of f and sof|sIn particular $f|\phi(m)$ since $a^{\phi(m)} \equiv 1 \mod m$.

Theorem Let p be prime and let f be a divisor of p-1. Then among a R.S.R. mod p there are exactly $\phi(f)$ elements belonging to the exponent $f \mod p$.

In particular there are $\pi(p-1)$ elements belonging to the exponent $p-1 \mod p$: sich an element is known as a primitive root mod p.

- **Proof** Let $\psi(f)$ be the number of elements belonging to the exponent f. We prove
 - (1) $\psi(f) = 0 \text{ or } \phi(f)$

Suppose f|p-1 and suppose $\psi(f) \neq 0$. Then $\exists a$, belonging to exponent f. $1, a, a^2 \dots a^{f-1}$ are uncongruent mod p, but all satisfy $x^f \equiv 1 \mod p$. So they are all solutions of $x^f \equiv 1$

Thus the numbers belonging to exponent f are to be found among these.

We show that a'' belongs to $\exp f \Leftrightarrow (v, f = 1$. Suppose a'' belongs to $\exp f'(: f'|f)$

- (i) (v, f) = 1 Suppose $(a'')^f \equiv 1 \mod p$ then $a''f \equiv 1 \mod p$ but a belongs to exp f and so f|vf' therefore ||f'| so f = f'.
- (ii) (v, f) = d > 1 $(a^v)^{\frac{f}{d}} \equiv (a^f)^{\frac{v}{d}} \equiv 1 \mod p \text{ since } a \text{ belongs to } \exp f.$ Thus a'' doesn't belong to $\exp f$ since $\frac{f}{d} < f.$ Hence $\psi(f) = \phi(f).$ We now prove

(2) $\sum_{f|p-1} \psi(f) = p-1$ Every residue $\neq 0 \mod p$ belongs to exactly one exponent f and $a^f \equiv 1 \mod p \Leftrightarrow f|p-1$ for $a^{p-1} \equiv 1$ by Fermats theorem. But $\sum_{f|p-1} \phi(f) = p-1$ So $\sum_{f|p-1} [\phi(f) - \psi(f)] = 0$, $[\phi(f) - \psi(f)] \ge 0$ by (1) therefore $\phi(f) = \psi(f)$.

Indices Suppose g is a primitive root mod p, p > 2.

Then $g^0, g^1, g^2, \ldots, g^{p-2}$ constitute an R.S.R. mod p.

For each a satisfying $(a,\ p)=1\exists$ a unique integer r such that $g^r\equiv a \mod p \ 0 \leq r \leq p-2$

We write $r = md_q a$.

Then $a \equiv b \mod p \Leftrightarrow md_g a = md_g b$

$$\begin{array}{l} md_g a^n = nmd_g a \\ md_g a b = md_g a + md_g b \\ md_g a = md_g g; md_{g'} a \end{array} \right\} \mod p - 1 \\ md1 = 0 \\ md - 1 = \frac{p-1}{2}, \text{ for } g^{p-1} \equiv 0 \text{ so } \left(g^{\frac{p-1}{2}} - 1\right) \left(g^{\frac{p-1}{2}} + 1\right) \equiv 0 \text{ but } g^{\frac{p-1}{2}} \neq 1 \\ \text{ as } g \text{ is a primitive root so } g^{\frac{p-1}{2}} \equiv -1 \end{array}$$

Example

$$p = 13 \quad g = 2 \quad N \quad \text{Index}$$

$$1 \quad 0$$

$$2 \quad 1$$

$$4 \quad 2$$

$$8 \quad 3$$

$$3 \quad 4$$

$$6 \quad 5$$

$$12 \quad 6$$

$$11 \quad 7$$

$$9 \quad 8$$

$$5 \quad 9$$

$$10 \quad 10$$

$$7 \quad 11$$

$$\mathbf{Example} \quad \sum_{n=1}^{p-1} n^s \equiv \begin{cases} 0 \mod p \text{ if } s \not\equiv 0 \mod p - 1 \\ -1 \mod p \text{ if } s \equiv 0 \mod p - 1 \end{cases}$$