Question

A gambler with capital $£ z$ bets against an opponent with capital $£(a-z)$ using $£ 1$ stakes. On each bet the gambler wins $£ 1$ with probability $\frac{1}{3}$, loses $£ 1$ with probability $\frac{1}{2}$ and retains his stake in the event of a draw. Show that the probability, P_{z}, that the game ends after an odd number of bets satisfies the second order difference equation

$$
2 P_{z+1}+7 P_{z}+3 P_{z-1}=6 \quad \text { for } \quad z=1,2, \ldots, a-1
$$

By solving the equation, or otherwise, calculate the probability that the game will end after an odd number of bets when the gambler and his opponent both start with $£ 2$.
Investigate the value of P_{z} if the gambler plays against an infinitely rich opponent.

Answer

The Gambler has $£ z$. The opponent has $£(z-a)$ pounds.
$P_{z}=\operatorname{Prob}($ game ends after as odd number of bets)
Consider the first bet. There are 3 outcomes.
(i) gambler wins. Then he has $£(z+1)$ and the game must not end in a further odd number of bets. Probability $\frac{1}{3}\left(1-P_{z+1}\right)$
(ii) gambler loses. Then he has $£(z-1)$ and the games must not end in a further odd number of bets. Probability $\frac{1}{2}\left(1-P_{z-1}\right)$
(iii) draw. Then the gambler still has $£ z$ and the game mustn't end in an odd number of bets. Probability $\frac{1}{6}\left(1-P_{z}\right)$
So $P_{z}=\frac{1}{3}\left(1-P_{z+1}\right)+\frac{1}{2}\left(1-P_{z-1}\right)+\frac{1}{6}\left(1-P_{z}\right)$ for $0<z<a$. Also $P_{0}=0$ and $P_{a}=0$
The equation when simplified becomes

$$
2 P_{z+1}+7 P_{z}+3 P_{z-1}=6 \quad 0<z<a
$$

Putting $P_{z}=\lambda^{z}$ in the homogeneous equation gives

$$
2 \lambda^{2}+7 \lambda+3=0 \Rightarrow(2 \lambda+1)(\lambda+3)=0 \Rightarrow \lambda=-\frac{1}{2},-3
$$

A particular solution of the inhomogeneous equation is $P_{z}=\frac{1}{2}$ (constant). So the general solution is

$$
P_{z}=A\left(-\frac{1}{2}\right)^{z}+B(-3)^{z}+\frac{1}{2}
$$

$P_{0}=0$ so $A+B+\frac{1}{2}=0$
$P_{a}=0$ so $A\left(-\frac{1}{2}\right)^{a}+B(-3)^{a}+\frac{1}{2}=0$
Solving gives $B=\frac{1-(-2)^{a}}{2\left(6^{a}-1\right)} \Rightarrow A=-B-\frac{1}{2}$
So $P_{z}=\frac{1-(-2)^{a}}{2\left(6^{a}-1\right)}\left[(-3)^{z}-\left(-\frac{1}{2}\right)^{z}\right]+\frac{1}{2}\left[1-\left(-\frac{1}{2}\right)^{z}\right]$
When $z=2$ and $a=4, P_{z}=\frac{1-2^{4}}{2\left(6^{4}-1\right)}\left(9-\frac{1}{4}\right)+\frac{1}{2}\left(1-\frac{1}{4}\right)=\frac{12}{37}=0 . \overline{324}$
In general, when $a \rightarrow \infty, \quad P_{z}=\frac{1}{2}\left(1-\left(-\frac{1}{2}\right)^{z}\right)$
So $P_{z} \rightarrow \frac{3}{8}$

