
Question

For each point p in H, p 6= i, determine the equation of the Euclidean circle
or line containing the hyperbolic line through p and i, in terms of Re(p) and
Im(p).

Answer

If Re(p)=0, then the hyperbolic line through p and i has the equation {Re(z) =
0}. (So a vertical euclidean line.)
If Re(p)=0, the slope of the euclidean line segment through p and i is m =
Im(p)− 1
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Setting y = 0 and solving for x we see that the euclidean circle containing
the hyperbolic line through i and p has center a
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The radius of the circle is:
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