Question

For each point p in $\mathbf{H}, p \neq i$, determine the equation of the Euclidean circle or line containing the hyperbolic line through p and i, in terms of $\operatorname{Re}(p)$ and $\operatorname{Im}(p)$.
Answer
If $\operatorname{Re}(p)=0$, then the hyperbolic line through p and i has the equation $\{\operatorname{Re}(\mathrm{z})=$ $\overline{0\} \text {. (So a vertical euclidean line.) }}$
If $\operatorname{Re}(p)=0$, the slope of the euclidean line segment through p and i is $m=$ $\frac{\operatorname{Im}(\mathrm{p})-1}{\operatorname{Re}(\mathrm{p})}$ and the midpoint is $\frac{1}{2}(p+i)$. So, the perpendicular bisector has the equation

$$
y-\frac{1}{2}(\operatorname{Im}(\mathrm{p})+1)=\frac{\operatorname{Re}(\mathrm{p})}{1-\operatorname{Im}(\mathrm{p})}\left(\mathrm{x}-\frac{1}{2} \operatorname{Re}(\mathrm{p})\right) .
$$

Setting $y=0$ and solving for x we see that the euclidean circle containing the hyperbolic line through i and p has center a

$$
\begin{aligned}
a & =-\frac{1}{2}(\operatorname{Im}(\mathrm{p})+1) \frac{(1-\operatorname{Im}(\mathrm{p}))}{\operatorname{Re}(\mathrm{p})}+\frac{1}{2} \operatorname{Re}(\mathrm{p}) \\
& =\frac{-1+\operatorname{Im}(\mathrm{p})^{2}}{2 \operatorname{Re}(\mathrm{p})}+\frac{\operatorname{Re}(\mathrm{p})^{2}}{2 \operatorname{Re}(\mathrm{p})}=\frac{|p|^{2}-1}{2 \operatorname{Re}(\mathrm{p})}
\end{aligned}
$$

The radius of the circle is:

$$
r=\left|\frac{\operatorname{Im}(\mathrm{p})^{2}}{2 \operatorname{Re}(\mathrm{p})}-i\right|=\sqrt{\left(\frac{|p|^{2}-1}{2 \operatorname{Re}(\mathrm{p})}\right)^{2}+1}
$$

