Question

For each of the following functions $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ find the points (if any) where $f\left(x_{1}, x_{2}\right)=0$ but where the 0 -contour is
(i) not locally the graph of a function $x_{2}=g\left(x_{1}\right)$,
(ii) not locally the graph of a function $x_{1}=h\left(x_{2}\right)$,
(iii) both (i) and (ii) :

$$
\begin{array}{ll}
f\left(x_{1}, x_{2}\right)=\quad & \text { (a) } x_{1}^{2}-2 x_{2}^{2}-4 \\
& \text { (b) } x_{1}^{3}-3 x_{1}-x_{2}^{2}+2 \\
& \text { (c) }\left(x_{1}+x_{2}\right)\left(x_{1}^{2}+x_{2}^{2}-1\right)
\end{array}
$$

Answer
(i) $x^{2}-2 y^{2}=4$

hyperbola $f(x, y)=0$.

This can be expressed (locally) as $y=g(x)$ (smooth function g) everywhere except where the hyperbola crosses the x-axis - namely where $\frac{\partial f}{\partial y}=0$. (There the hyperbola bends back.)
(ii)

(Think of graph of f)
$\frac{\partial f}{\partial y}=-2 y$ which $=0$ on the x-axis: points $(-2,0)$ and $(1,0)$. At these points $f=0$ fails to have (locally) the form $y=g(x)$, since at $(-2,0)$ it bends back, while at $(1,0)$ it has two intersecting branches.
(iii) $f(x, y)=0$ where $x+y=0$ or $x^{2}+y^{2}=1$.

$\frac{\partial f}{\partial y}=2 x y+x^{2}+3 y^{2}-1$; this vanishes (on the locus $f=0$) at $(\pm 1,0)$ (where $f=0$ bends back), and at $\pm\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (where two branches intersect). Elsewhere $y=g(x)$ locally.

