QUESTION

The rate of interest is 8%. What will $£ 100$ be worth in three years' time using
(a) simple interest
(b) annual compound interest.

You may assume that the UK will not join EMU in that time. ANSWER
(a) Simple interest pays only on the original amount M_{0}. Thus if the rate is r,

$$
M_{1}=M_{0}+M_{0} r ; M_{2}=M_{1}+M_{0} r ; M_{3}=M_{2}+M_{0} r
$$

or after T periods of interest

$$
M_{T}=M_{T-1}+r M_{0} \Rightarrow M_{T}=M_{0}(1+r T)
$$

Thus if $r=0.08(8 \%), T=3, M_{0}=100$

$$
M_{3}=100 \times(1+0.08 \times 3)=£ 124
$$

(b) Compound interest pays on the original investment M_{0} plus any interest so far. Thus if the quoted annual rate is r,

$$
M_{1}=M_{0}(1+r) ; M_{2}=M_{1}(1+r) ; \ldots ; M_{n}=M_{n-1}(1+r) \Rightarrow M_{t}=M_{0}(1+r)^{T}
$$

Clearly compound interest pays more than simple interest, since

$$
\underbrace{(1+r)^{T}}_{\text {compound }}=\underbrace{1+r T}_{\text {simple }}+\underbrace{\frac{T(T-1) T^{2}}{2}}_{\text {other extra stuff }}+\ldots
$$

Therefore

$$
M_{3}=100(1+0.08)^{3}=£ 125.97(>£ 124)
$$

