Question

Define what it means for a function $f: \mathbf{R} \rightarrow \mathbf{R}$ to be continuous. Using the definition, show that the function $f(x)=2 x-5$ is continuous.

Answer

f is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a) . f$ is continuous if it is continuous at every point in its domain.
To show that $f(x)=2 x-5$ is continuous, we show that it is continuous at a for every a. That is, we need to show that

$$
\lim _{x \rightarrow a}(2 x-5)=2 a-5
$$

So, for any $\varepsilon>0$, take $\delta=\frac{1}{2} \varepsilon$. Then, if $|x-a|<\delta=\frac{1}{2} \varepsilon$, then

$$
|f(x)-f(a)|=|(2 x-5)-(2 a-5)|=2|x-a|<2 \frac{1}{2} \varepsilon=\varepsilon
$$

and so the definition of $\lim _{x \rightarrow a} f(x)=f(a)$ is satisfied.

