Question

Find the small ε expansion of the roots of $\varepsilon x^{2}-4 x+1=0$.

Answer

$\varepsilon x^{2}-4 x+1=0$
This is a singular perturbation as ε multiplies highest power of x : when $\varepsilon=0$ obtain only one root $x=\frac{1}{4}$.
CHEAT!
Exact solution is

$$
\begin{aligned}
x & =\frac{4 \pm \sqrt{16-4 \varepsilon}}{2 \varepsilon} \\
& =\frac{2 \pm \sqrt{4-\varepsilon}}{\varepsilon} \\
& =\frac{2}{\varepsilon} \pm \frac{2}{\varepsilon}\left(1-\frac{\varepsilon}{4}\right)^{\frac{1}{2}} \\
& =\frac{2}{\varepsilon} \pm \frac{2}{\varepsilon} \mp \frac{1}{4} \mp \frac{\varepsilon}{64}+O\left(\varepsilon^{2}\right) \\
& =\left\{\begin{array}{l}
\frac{4}{\varepsilon}-\frac{1}{4} c d o t \frac{-\varepsilon}{64}+O\left(\varepsilon^{2}\right) \\
\frac{1}{4}+\frac{\varepsilon}{64}+O\left(\varepsilon^{2}\right)
\end{array}\right.
\end{aligned}
$$

so now try it the other (proper) way:
Use ansatz
$x=\frac{x_{0}}{\varepsilon}+x_{1}+O\left(\varepsilon^{2}\right) \rightarrow$ for singular root $\rightarrow x_{0}=0 \Rightarrow$ regular root discord or $x_{0} \stackrel{\varepsilon}{=} 4$ actual one.
$x=x_{0}+\varepsilon x_{1}+O\left(\varepsilon^{2}\right) \rightarrow$ for regular root
Substitute into equation and balance at each order to show coefficients above.

