Question

Solve $x^{2}-2.01 x+1=0$
(i) Exactly
(ii) Using a perturbation series to an accuracy of 0.0001.

Answer

(i)

$$
\begin{aligned}
x^{2}-2.01 x+1=0 \Rightarrow x & =\frac{2.01 \pm \sqrt{4.0401-4}}{2} \\
& =\frac{(2.10 \pm 0.200249844)}{2} \\
& =1.105124922 \cdots \\
& \underline{o r} 0.904875078 \cdots
\end{aligned}
$$

(ii) Roots not distinct at $\varepsilon=0$, so try perturbation on $\underbrace{x^{2}-2 x+1}=0$

$$
(x-1)^{2}=0
$$

$$
x^{2}-(2+\varepsilon) x+1=0 \text { where } \varepsilon=0.01
$$

Ansatz: $x=x_{0}+x_{1} \varepsilon^{\frac{1}{2}}+x_{2} \varepsilon+O\left(\epsilon^{\frac{3}{2}}\right)$
since 2 coincident roots at $\varepsilon=0$. Check notes and see.
Substitute:

$$
\left[x_{0}+x_{1} \varepsilon^{\frac{1}{2}}+x_{2} \varepsilon+O\left(\epsilon^{\frac{3}{2}}\right)\right]^{2}-(2+\varepsilon)\left[x_{0}+x_{1} \varepsilon^{\frac{1}{2}}+x_{2} \varepsilon+O\left(\varepsilon^{\frac{3}{2}}\right)\right]+1=0
$$

Expand:

$$
\begin{aligned}
& x_{0}^{2}+x_{1}^{2} \varepsilon+x_{2}^{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right) \\
& \text { probably ok as } \varepsilon^{2}=0.0001 \text { so truncate at } \mathrm{O}\left(\varepsilon^{2}\right) \\
\quad & \text { and hope that implied constant is }<1 \\
+ & 2 x_{0} x_{1} \varepsilon^{\frac{1}{2}}+2 x_{0} x_{2} \varepsilon+2 x_{0} x_{3} \varepsilon^{\frac{3}{2}}+O\left(\varepsilon^{\frac{5}{2}}\right. \\
+ & 2 x_{1} x_{2} \varepsilon^{\frac{3}{2}}+2 x_{1} x_{3} \varepsilon^{\frac{5}{2}}+O\left(\varepsilon^{\frac{5}{2}}\right. \\
+ & 2 x_{2} x_{3} \varepsilon^{\frac{5}{2}}+O\left(\varepsilon^{\frac{7}{2}}\right. \\
- & 2 x_{0}-2 x_{1} \varepsilon^{\frac{1}{2}}-2 x_{2} \varepsilon-2 x_{3} \varepsilon^{\frac{3}{2}}-2 x_{4} \varepsilon^{2}+O\left(\varepsilon^{5}\right) \\
- & \varepsilon x_{0}-x_{1} \varepsilon^{\frac{3}{2}}-x_{2} \varepsilon^{2}+O\left(\varepsilon^{\frac{5}{2}}\right) \\
+ & 1=0
\end{aligned}
$$

Balance at $O\left(\varepsilon^{n}\right)$:
$O\left(\varepsilon^{0}\right): x_{0}^{2}-2 x_{0}+1=0 \Rightarrow x_{0} \equiv 1$ twice
$O(\varepsilon^{\frac{1}{2}}: 2 x_{1} x+0-2 x_{1}=0 \Rightarrow x_{1}(\underbrace{x_{0}-1})=0 \Rightarrow x_{1}=$ anything! What do we do? Carry on and see.
$O(\varepsilon):-2 x_{2}+2 x_{0} x_{2}+x_{1}^{2}-x_{0}=0 \Rightarrow-2 x_{2}+2 x_{2}+x_{1}^{2}-1=0 \Rightarrow \underline{x_{1}= \pm 1}$
$O\left(\varepsilon^{\frac{3}{2}}:-x_{1}+x_{1} x_{2}-2 x_{3}+2 x_{0} x_{3}=0 \Rightarrow \mp 1 \pm 2 x_{2}=0 \Rightarrow \underline{x_{2}=+\frac{1}{2}}\right.$
Actually need to go to $O\left(\varepsilon^{2}\right)$
$O\left(\varepsilon^{2}\right): x_{2}^{2}-2 x_{4}-x_{2}+2 x_{0} x_{4}+2 x_{1} x_{3}=0 \Rightarrow \frac{1}{4}-\frac{1}{2} \pm 2 x_{3}=0 \Rightarrow x_{3}= \pm \frac{1}{8}$
Thus we have a perturbation expansion:
$x=1 \pm \varepsilon^{\frac{1}{2}}+\frac{1}{2} \varepsilon \pm \frac{1}{8} \varepsilon^{\frac{3}{2}}+O\left(\varepsilon^{2}\right)$
This turns out to be sufficient as $O\left(\varepsilon^{2}\right)=\underline{0.0001}$ when $\varepsilon=0.01$
Therefore

$$
\begin{aligned}
x & \approx 1 \pm(0.01)^{\frac{1}{2}}+\frac{0.01}{2} \pm \frac{1}{8}(0.001)^{\frac{3}{2}} \\
& =1.10512_{\uparrow} 5 \text { or } 0.904875 \uparrow
\end{aligned}
$$

which is certainly accurate to 0.0001 by comparison with exact result.
Note: Here we had to calculate the x_{i} at the $O\left(\varepsilon^{\frac{i+1}{2}}\right)$ level, due to the strange behaviour at $O\left(\varepsilon^{\frac{1}{2}}\right)$. Not a problem, just an example of how you may have to go to a higher order (and hence do more work) to find coefficients of lower orders.
Nasty question to start with but good practice!

