## QUESTION

(a) Solve the following linear programming problem using the simplex method.

$$
\begin{array}{ll}
\text { Maximize } & z=3 x_{1}-10 x_{2}+2 x_{3}+3 x_{4} \\
\text { subject to } & x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0 \\
& 2 x_{1}-5 x_{2}+4 x_{3}+3 x_{4}=32 \\
& 3 x_{1}+x_{2}+2 x_{3}+x_{4} \geq 12
\end{array}
$$

(b) An engineering company manufactures industrial machines for overseas export. Demand for the next six months, which must be satisfied, is shown in the following table.

| Month | July | Aug | Sept | Oct | Nov | Dec |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Demand | 150 | 180 | 240 | 170 | 190 | 220 |

Capacity restrictions limit the production of machines to a maximum of 200 per month. However, it is possible to manufacture machines before they are required. In this case, there is a cost of $£ 200$ per machine in storage at the end of each month. At the start of July, there are no machines in storage, and no stock is required at the end of December.
The machines can be distributed to customers by aeroplane or by ship. Air transportation costs $£ 1000$ per machine; sea transportation costs $£ 750$ per machine. Machines to be transported by air are dispatched in the month that they are required. On the other hand, machines to be transported by ship must be dispatched one month in advance.
Write down a linear programming formulation (but do not attempt to solve it) for the problem of planning production and distribution so that demand is satisfied at minimum total cost. You may ignore any requirements for variables to be integer-valued.

## ANSWER

(a) Introduce a slack variable $s \geq 0$, and artificial variables $a_{1} \geq 0, a_{2} \geq 0$

| Basic | $z^{\prime}$ | $z$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $s$ | $a_{1}$ | $a_{2}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{1}$ | 0 | 0 | 2 | -5 | 4 | 3 | 0 | 1 | 0 | 32 |
| $a_{2}$ | 0 | 0 | 3 | 1 | 2 | 1 | -1 | 0 | 1 | 12 |
|  | 1 | 0 |  |  |  |  |  | 1 | 1 | 0 |
|  | 1 | 0 | -5 | 4 | -6 | -4 | 1 | 0 | 0 | -44 |
| 0 | 1 | -3 | 10 | -2 | -3 | 0 | 0 | 0 | 0 |  |


| Basic | $z^{\prime}$ | $z$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $s$ | $a_{1}$ | $a_{2}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{1}$ | 0 | 0 | -4 | -7 | 0 | 1 | 2 | 1 | -2 | 8 |
| $x_{3}$ | 0 | 0 | $\frac{3}{2}$ | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | $-\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 6 |
|  | 1 | 0 | 4 | 7 | 0 | -1 | -2 | 0 | 3 | -8 |
|  | 0 | 1 | 0 | 11 | 0 | -2 | -1 | 0 | 1 | 12 |
| Basic | $z^{\prime}$ | $z$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $s$ | $a_{1}$ | $a_{2}$ |  |
| $s$ | 0 | 0 | -2 | $-\frac{7}{2}$ | 0 | $\frac{1}{2}$ | 1 | $\frac{1}{2}$ | -1 | 4 |
| $x_{3}$ | 0 | 0 | $\frac{1}{2}$ | $-\frac{5}{4}$ | 1 | $\frac{3}{4}$ | 0 | $\frac{1}{4}$ | 0 | 8 |
|  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | -2 | $\frac{15}{2}$ | 0 | $-\frac{3}{2}$ | 0 | $\frac{1}{2}$ | 0 | 16 |  |

Phase 1 ends, so discard $z^{\prime}, a_{1}, a_{2}$

| Basic | $z$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $s$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s$ | 0 | 0 | $-\frac{17}{2}$ | 4 | $\frac{7}{2}$ | 1 | 36 |
| $x_{1}$ | 0 | 1 | $-\frac{5}{2}$ | 2 | $\frac{3}{2}$ | 0 | 16 |
|  | 1 | 0 | $\frac{5}{2}$ | 4 | $\frac{3}{2}$ | 0 | 48 |

Thus, we have an optimal solution

$$
x_{1}=16 x_{2}=0 x_{3}=0 z=48
$$

(b) Let the months be labeled $1,2, \ldots, 6$. For month $t$ let
$x_{t}=$ production
$y_{t}=$ quantity sent by air
$z_{t}=$ quantity sent by ship
$s_{t}=$ end of month stock
Minimize $\quad 1000\left(y_{1}+\ldots+y_{6}\right)+750\left(z_{1}+\ldots+z_{6}\right)+200\left(s_{1}+\ldots+s_{6}\right)$
subject to $x_{t}, y_{t}, z_{t}, s_{t} \geq 0 t=1, \ldots, 6$
$x_{t} \leq 200 t=1, \ldots, 6$
$s_{t-1}+x_{t}-y_{t}-z_{t}=s_{t} t=1, \ldots, 6$

$$
\begin{aligned}
y_{1} & =150 \\
z_{1}+y_{2} & =180 \\
z_{2}+y_{3} & =240 \\
z_{3}+y_{4} & =170 \\
z_{4}+y_{5} & =190 \\
z_{5}+y_{6} & =220 \\
s_{0} & =* 0 \\
s_{6} & =0
\end{aligned}
$$

