QUESTION

Show that
$A=\left[\begin{array}{ccc}5 & 1 & 1 \\ -12 & 12 & 3 \\ -4 & 1 & 10\end{array}\right]$
has a triple eigenvalue 9 but that 9 has only a two dimensional eigenspace $(4 x=y+z)$ so A cannot be diagonalised. Choose a vector \mathbf{b} not in the eigenspace and let $\mathbf{a}=(A-9 I) \mathbf{b}$
Show that \mathbf{a} is an eigenvector. Choose a second eigenvector \mathbf{c} independent of a and form the matrix M which has as its columns the vectors a,b,c. Calculate M^{-1} and show that the matrix
$\Lambda=M^{-1} A M=\left[\begin{array}{lll}9 & 1 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$
ANSWER There are many choices for \mathbf{b} but to make the calculation as simple as possible, start with $\mathbf{b}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Then
$\mathbf{a}=(A-9 I)\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$
Another simple choice is $\mathbf{c}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ and these choices give

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 1 \\
-3 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
5 & 1 & 1 \\
-12 & 12 & 3 \\
-4 & 1 & 10
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 0 & 1 \\
1 & 1 & -1
\end{array}\right] } \\
= & {\left[\begin{array}{ccc}
5 & 1 & 1 \\
-36 & 9 & 9 \\
-27 & 9 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 0 & 1 \\
1 & 1 & -1
\end{array}\right] } \\
= & {\left[\begin{array}{lll}
9 & 1 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right] }
\end{aligned}
$$

