QUESTION

Show that
$A=\left[\begin{array}{lll}3 & -2 & 1 \\ 3 & -1 & 1 \\ 4 & -5 & 4\end{array}\right]$
has a triple eigenvalue but only a one dimensional eigenspace (the line $x=$ $\alpha, y=2 \alpha, z=3 \alpha$) so A cannot be diagonalised. Calculate $(A-2 I)^{2}$ and $(A-2 I)^{3}$.
Find a vector \mathbf{u} satisfying
$(A-2 I)^{3} \mathbf{u}=\mathbf{0}$ but $(A-2 I)^{2} \mathbf{u} \neq \mathbf{0}$.
Calculate
$\mathbf{v}=(A-2 I) \mathbf{u}$
and
$\mathbf{w}=(A-2 I) \mathbf{v}$.
Show that \mathbf{w} is an eigenvector of A.
Now form the matrix M the columns of which are the vectors $\mathbf{w}, \mathbf{v}, \mathbf{u}$ respectively and calculate $M^{-1} A M$

ANSWER
$A-2 I=\left[\begin{array}{lll}1 & -2 & 1 \\ 3 & -3 & 1 \\ 4 & -5 & 2\end{array}\right] \quad(A-2 I)^{2}=\left[\begin{array}{lll}-1 & -1 & 1 \\ -2 & -2 & 2 \\ -3 & -3 & 3\end{array}\right] \quad(A-2 I)^{3}=\mathbf{0}$
Choosing $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $\mathbf{v}=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$. With this choice of \mathbf{u},
\mathbf{v}, \mathbf{w} then

$$
M^{-1} A M=\left[\begin{array}{lll}
0 & 4 & -3 \\
0 & 3 & -2 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
3 & -2 & 1 \\
3 & -1 & 1 \\
4 & -5 & 4
\end{array}\right]\left[\begin{array}{lll}
-1 & 1 & 1 \\
-2 & 3 & 0 \\
-3 & 4 & 0
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

