Question

Let ℓ_1 be the hyperbolic line contained in the Euclidean line $\{z \in \mathbb{C} | \operatorname{Re}(z) = 4\}$, let ℓ_2 be the hyperbolic line contained in the Euclidean circle with center -3 and radius 3, and let p be the point p = 2 + 2i. Determine explicitly all the hyperbolic lines through p which are parallel to both ℓ_1 and ℓ_2 .

Answer

Let's take it one line at a time:

Consider the two lines through p and the two endpoints at infinity of ℓ_2 : The line through p and 0 has endpoints at infinity 0,4.

The line through p and -6 has endpoints at infinity $-6, \frac{5}{2}$ (of center and radius of the euclidean circle containing the hyperbolic line through p, -6). These 4 points $-6, 0, \frac{5}{2}, 4$ break $\mathbf{R} \cup \{\infty\}$ into 4 intervals:

$$(-6,0), \ \left[0,\frac{5}{2}\right], \ \left(\frac{5}{2},4\right), \ \left[4,-6\right]$$

(where $[4, -6] = [4, \infty] \cup \{\infty\} \cup (-\infty, -6]$ is an interval through ∞). A hyperbolic circle through p intersects ℓ_2 if and only if it has an end point at infinity in (-6,0) or $\left(\frac{5}{2}, 4\right)$. So, the hyperbolic lines through p and parallel to ℓ_2 correspond to points in $[4, -6] \cup \left[0, \frac{5}{2}\right]$.

Similarly, the two hyperbolic lines through p and the endpoints at infinity of ℓ_1 determine 4 intervals on $\mathbf{R} \cup \{\infty\}$ namely

 $(0,2), [2,4], (4,\infty), \text{ and } [-\infty,0]$

The lines parallel to ℓ_1 correspond to the points in $[2, 4] \cup [-\infty, 0]$.

So, the lines through p parallel to both ℓ_1 and ℓ_2 correspond to the points in the intersection $([2,4] \cup [-\infty,0]) \cap ([4,-6] \cup [0,\frac{5}{2}]) = [2,\frac{5}{2}] \cup [-\infty,-6] \cup \{0,4\}$ (where $[-\infty,-6] = (-\infty,-6] \cup \{\infty\}$).