Question

Let ℓ_{1} be the hyperbolic line contained in the Euclidean line $\{z \in \mathbf{C} \mid \operatorname{Re}(z)=$ $4\}$, let ℓ_{2} be the hyperbolic line contained in the Euclidean circle with center -3 and radius 3 , and let p be the point $p=2+2 i$. Determine explicitly all the hyperbolic lines through p which are parallel to both ℓ_{1} and ℓ_{2}.

Answer

Let's take it one line at a time:

Consider the two lines through p and the two endpoints at infinity of ℓ_{2} :
The line through p and 0 has endpoints at infinity 0,4 .
The line through p and -6 has endpoints at infinity $-6, \frac{5}{2}$ (of center and radius of the euclidean circle containing the hyperbolic line through $p,-6$).
These 4 points $-6,0, \frac{5}{2}, 4$ break $\mathbf{R} \cup\{\infty\}$ into 4 intervals:

$$
(-6,0),\left[0, \frac{5}{2}\right],\left(\frac{5}{2}, 4\right),[4,-6]
$$

(where $[4,-6]=[4, \infty] \cup\{\infty\} \cup(-\infty,-6]$ is an interval through ∞).
A hyperbolic circle through p intersects ℓ_{2} if and only if it has an end point at infinity in $(-6,0)$ or $\left(\frac{5}{2}, 4\right)$. So, the hyperbolic lines through p and parallel to ℓ_{2} correspond to points in $[4,-6] \cup\left[0, \frac{5}{2}\right]$.
Similarly, the two hyperbolic lines through p and the endpoints at infinity of ℓ_{1} determine 4 intervals on $\mathbf{R} \cup\{\infty\}$ namely

$$
(0,2),[2,4],(4, \infty), \text { and }[-\infty, 0]
$$

The lines parallel to ℓ_{1} correspond to the points in $[2,4] \cup[-\infty, 0]$.

So, the lines through p parallel to both ℓ_{1} and ℓ_{2} correspond to the points in the intersection
$([2,4] \cup[-\infty, 0]) \cap\left([4,-6] \cup\left[0, \frac{5}{2}\right]\right)=\left[2, \frac{5}{2}\right] \cup[-\infty,-6] \cup\{0,4\}$
(where $[-\infty,-6]=(-\infty,-6] \cup\{\infty\}$).

