Question

Determine the hyperbolic line in the upper half plane that passes through the points 3 + i and -2 + 4i.

Answer

Set p = 3+i and q = -2+4i. Since $\operatorname{Re}(p) \neq \operatorname{Re}(q)$, the hyperbolic line through p and q lies in a euclidean circle of some center a and some radius r.

• calculate details of the (euclidean) line segment joining p - q:

slope is $m = \frac{\text{Im}(p) - \text{Im}(q)}{\text{Re}(p) - \text{Re}(q)} = -\frac{3}{5}$ midpoint is $\frac{1}{2}(p+q) = \frac{1}{2} + \frac{5}{2}i$

• calculate equation of perpendicular bisector:

slope is
$$-\frac{1}{m} = \frac{5}{3}$$
 through $\frac{1}{2} + \frac{5}{2}i$ and so its equation is $y - \frac{5}{2} = \frac{5}{3}\left(x - \frac{1}{2}\right)$

• intersection with x-axis occurs at (a, 0):

$$-\frac{5}{2} = \frac{5}{3}\left(a - \frac{1}{2}\right)$$
. So $-\frac{3}{2} = a - \frac{1}{2}$ and $\underline{a} = -1$.

• radius is
$$|a - p| = |q - a|$$
:
 $|a - p| = |-1 - 3 - i| = |-4 - i| = \sqrt{17}$
 $|a - q| = |-1 + 2 - 4i| = |1 - 4i| = \sqrt{17}$
(as a check).

So, this hyperbolic line is contained in the euclidean circle with center a = -1 and radius $r = \sqrt{17}$.