Question

Determine the hyperbolic line in the upper half plane that passes through the points $3+i$ and $-2+4 i$.

Answer

Set $p=3+i$ and $q=-2+4 i$. Since $\operatorname{Re}(p) \neq \operatorname{Re}(q)$, the hyperbolic line through p and q lies in a euclidean circle of some center a and some radius r.

- calculate details of the (euclidean) line segment joining $p-q$:
slope is $m=\frac{\operatorname{Im}(\mathrm{p})-\operatorname{Im}(\mathrm{q})}{\operatorname{Re}(\mathrm{p})-\operatorname{Re}(\mathrm{q})}=-\frac{3}{5}$
midpoint is $\frac{1}{2}(p+q)=\frac{1}{2}+\frac{5}{2} i$
- calculate equation of perpendicular bisector:
slope is $-\frac{1}{m}=\frac{5}{3}$ through $\frac{1}{2}+\frac{5}{2} i$ and so its equation is
$y-\frac{5}{2}=\frac{5}{3}\left(x-\frac{1}{2}\right)$
- intersection with x-axis occurs at $(a, 0)$:

$$
-\frac{5}{2}=\frac{5}{3}\left(a-\frac{1}{2}\right) . \text { So }-\frac{3}{2}=a-\frac{1}{2} \text { and } \underline{a=-1} .
$$

- radius is $|a-p|=|q-a|$:
$|a-p|=|-1-3-i|=|-4-i|=\sqrt{17}$
$|a-q|=|-1+2-4 i|=|1-4 i|=\sqrt{17}$
(as a check).
So, this hyperbolic line is contained in the euclidean circle with center $a=-1$ and radius $r=\sqrt{17}$.

