Question

Let

$$
J=\int_{0}^{1} \frac{\sin x}{1+x^{3}} d x
$$

where the integral limits are in radians.
Carefully explaining your method, calculate J to 4 decimal places using
(i) the trapezium rule with 5 ordinates,
(ii) Simpson's rule with 5 ordinates.

Compare your answers with the exact result $J=0.346997 \ldots$
Note: Marks will only be awarded if sufficient working is shown.
Answer

$$
J=\int_{0}^{1} \frac{\sin x}{1+x^{3}} d x
$$

(i) Trapezium rule with 5 ordinates:

$$
\begin{aligned}
& J \approx \frac{d}{2}\left(y_{1}+2 y_{2}+2 y_{3}+2 y_{4}+y_{5}\right) \\
& \text { where } d=\frac{1-0}{5-1}=\frac{1}{4} \\
& x_{1}=0 \quad x_{4}=\frac{3}{4} \\
& x_{2}=\frac{1}{4} \quad x_{5}=1 \\
& x_{3}=\frac{1}{2} \\
& y_{i}=f\left(x_{i}\right) ; \quad f(x)=\frac{\sin x}{\left(1+x^{3}\right)} \\
& \begin{array}{c|c|c|c|c|c|}
x & 0 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} & 1 \\
\hline y & 0 & 0.243598 & 0.426156 & 0.479394 & 0.420735
\end{array} \\
& J \approx \frac{1}{8}(0.420735+2 \times(0.479394+0.426156+0.243598)+0) \\
& =\underline{0.339879}
\end{aligned}
$$

NB working

$$
\begin{aligned}
& =\frac{1}{8} \times(0.420735+2.2983) \\
& =\frac{1}{8} \times 2.71903 \\
& =0.339879
\end{aligned}
$$

(ii) Simpson with 5 ordinates
$J \approx \frac{h}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+y_{5}\right)$
4 equal segments $\Rightarrow h=\frac{1}{4}$ as above
and we have the same $y_{i} \mathrm{~s}$ as above.
Hence

$$
\begin{aligned}
J \approx & \frac{1}{12} \times(0+4 \times(0.243598+0.479394) \\
& +2 \times(0.426156)+0.420735) \\
= & 0.347085 \\
= & \underline{0.4407}
\end{aligned}
$$

NB working

$$
\begin{aligned}
& \frac{1}{12} \times(2.89197+0.852312+0.420735) \\
= & \frac{1}{12} \times 4.16502 \\
= & 0.347085
\end{aligned}
$$

Actual=0.346997 to get 6dp
\Rightarrow Trapezium is accurate to 2% or 1 dp and Simpson is accurate to 0.02% or 3 dp .

