Question

Let ℓ_{0} and ℓ_{1} be ultraparallel hyperbolic lines in \mathbf{H}. Label the endpoints at infinity of ℓ_{0} as z_{0} and z_{1}, and the endpoints at infinity of ℓ_{1} as w_{0} and w_{1}, so that they occur in the order z_{0}, w_{0}, w_{1}, and z_{1} moving counter-clockwise around R. Prove that

$$
\tanh ^{2}\left(\frac{1}{2} \mathrm{~d}_{\mathbf{H}}\left(\ell_{0}, \ell_{1}\right)\right)=\frac{1}{1-\left[z_{0}, w_{0} ; w_{1}, z_{1}\right]} .
$$

Answer

By the ordering of the parts around \mathbf{R}, there exists an element of $\operatorname{Möb}(\mathbf{H})$ taking z_{0} to $0, z_{1}$ to ∞, w_{0} to 1 , and w_{1} to $x>1$, so that

$$
\left[z_{0} w_{0} ; w_{1} z_{1}\right]=[0,1 ; x, \infty]=\frac{x-1}{0-1}=1-x
$$

and so $1-\left[z_{0} w_{0} ; w_{1} z_{1}\right]=x$.
$\underline{d_{\mathbf{H}}\left(\ell_{0} \ell_{1}\right):}$

we used to determine the perpendicular bisector of $\ell_{0} \ell_{1}$: By the euclidean pythagorean theorem:

$$
\begin{aligned}
& \left(\frac{1+x}{2}\right)^{2}=r^{2}+\left(\frac{-1+x}{2}\right)^{2} \\
& (1+x)^{2}=4 r^{2}+(x-1)^{2} \\
& 1+2 x+x^{2}=4 r^{2}+x^{2}-2 x+1 \\
& 4 r^{2}=4 x \\
& r=\sqrt{x} \\
& \cos (\alpha)=\frac{2 r}{1+x}=\frac{2 \sqrt{x}}{1+x} \\
& \sin (\alpha)=\frac{x-1}{2} \cdot \frac{2}{x+1}=\frac{x-1}{x+1}
\end{aligned}
$$

$$
\begin{aligned}
d_{\mathbf{H}}\left(\ell_{0} \ell_{1}\right) & =\int_{\alpha}^{\frac{\pi}{2}} \frac{1}{\sin (t)} d t \\
& =-\ln |\csc (\alpha)-\cot (\alpha)| \\
& =\ln \left|\frac{\sin (\alpha)}{1-\cos (\alpha)}\right|=\ln \left|\frac{x-1}{1+x-2 \sqrt{x}}\right|
\end{aligned}
$$

$$
d_{\mathbf{H}}\left(\ell_{0} \ell_{1}\right)=\ln \left(\frac{x-1}{(\sqrt{x}-1)^{2}}\right)
$$

$$
=\ln \left(\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)^{2}}\right)
$$

$$
=\ln \left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)
$$

$$
\begin{aligned}
\tanh ^{2}(a) & =\frac{\sinh ^{2}(a)}{\cosh ^{2}(a)} \\
& =\frac{\left(e^{a}-e^{-a}\right)^{2}}{\left(e^{a}+e^{-a}\right)^{2}} \\
& =\frac{e^{2 a}+e^{-2 a}-2}{e^{2 a}+e^{-2 a}+2}
\end{aligned}
$$

$$
\begin{aligned}
\tanh ^{2}\left(\frac{1}{2} d_{\mathbf{H}}\left(\ell_{0} \ell_{1}\right)=\right. & \tanh ^{2}\left(\frac{1}{2} \ln \left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\right) \\
= & \frac{\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-2}{\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+2} \\
= & \frac{(\sqrt{x}-1)^{2}+(\sqrt{x}-1)^{2}-2(x-1)}{(\sqrt{x}+1)^{2}+(\sqrt{x}-1)^{2}+2(x-1)} \\
= & \frac{4}{4 x}=\frac{1}{x}=\frac{1}{1-\left[z_{0}, w_{0} ; w_{1}, z_{1}\right]}
\end{aligned}
$$

