Question

Given two sets X and Y in \mathbf{H}, define

$$
\mathrm{d}_{\mathbf{H}}(X, Y)=\inf \left\{\mathrm{d}_{\mathbf{H}}(x, y) \mid x \in X, y \in Y\right\}
$$

Now, let ℓ_{1} be the hyperbolic line contained in the Euclidean line $\{\operatorname{Re}(z)=$ $4\}$, let ℓ_{2} be the hyperbolic line contained in the Euclidean line $\{\operatorname{Re}(z)=$ $-14\}$, and let ℓ_{3} be the hyperbolic line contained in the Euclidean circle with Euclidean center 0 and Euclidean radius 1.

Calculate the three numbers $\mathrm{d}_{\mathbf{H}}\left(\ell_{1}, \ell_{2}\right), \mathrm{d}_{\mathbf{H}}\left(\ell_{2}, \ell_{3}\right)$, and $\mathrm{d}_{\mathbf{H}}\left(\ell_{1}, \ell_{3}\right)$.
Use this to prove that $\mathrm{d}_{\mathbf{H}}(\cdot, \cdot)$ is not a metric on the set of subsets of \mathbf{H}.

Answer

$d_{\mathbf{H}}\left(\ell_{1} \ell_{2}\right)=0$
$\overline{\text { Consider (for }} \lambda>0) 4+\lambda \in \ell_{1}$ and $-14+\lambda \in \ell_{2}$. The horizontal euclidean line segment from $4+\lambda$ has hyperbolic length $\frac{18}{\lambda}$ and so $d_{\mathbf{H}}(4+\lambda,-14+\lambda)<\frac{18}{\lambda}$ (since the hyperbolic distance is the length of the hyperbolic line segment, which is less than the hyperbolic length of the euclidean line segment).
Hence $d_{\mathbf{H}}\left(\ell_{1} \ell_{2}\right) \leq \inf \left\{\left.\frac{18}{\lambda} \right\rvert\, \lambda>0\right\}=0$
For $d_{\mathbf{H}}\left(\ell_{1} \ell_{3}\right)$ and $d_{\mathbf{H}}\left(\ell_{2} \ell_{3}\right)$, these two use the same method: $\overline{d_{\mathbf{H}}\left(\ell_{1} \ell_{3}\right)}$ first draw the picture.

The distance from ℓ_{1} to ℓ_{3} is equal to the hyperbolic length of the common perpendicular.

Any hyperbolic line perpendicular to ℓ_{1} is contained in a euclidean circle with center 4: it intersects ℓ_{3} at $e^{i \theta}$ if (by the euclidean pythagorean theorem)

$$
\begin{aligned}
& 16=1+\left|4-e^{i \theta}\right|^{2} \\
& 16=1+16-4 e^{i \theta}-4 e^{-i \theta}+1 \\
& 8 \cos (\theta)=2 \\
& \cos (\theta)=\frac{1}{4} \\
& \sin (\theta)=\frac{\sqrt{15}}{4} \quad \theta \sim 1.3181 \ldots
\end{aligned}
$$

Parametrize the common perpendicular by $f(t)=4+r e^{i t}$ where

$$
\begin{aligned}
r=\left|4-e^{i \theta}\right| & =|4-\cos (\theta)-i \sin (\theta)| \\
& =\sqrt{\left(4-\frac{1}{4}\right)^{2}+\frac{15}{16}} \\
& =\frac{4 \sqrt{15}}{4}=\sqrt{15}
\end{aligned}
$$

and where $\frac{\pi}{2} \leq t \leq \pi-\alpha$, where α is as in the picture.
$\cos (\alpha)=\frac{1}{\sqrt{15}}(4-\cos (\theta))=\frac{\sqrt{15}}{4}$
$\sin (\alpha)=\frac{1}{\sqrt{15}} \sin (\theta)=\frac{1}{4}$
So,

$$
\begin{aligned}
d_{\mathbf{H}}\left(\ell_{1} \ell_{3}\right) & =\int_{\frac{\pi}{2}}^{\pi-\alpha} \frac{1}{\sin (t)} d t \\
& =\ln |\csc (\pi-\alpha)-\cot (\pi-\alpha)|-\ln (\alpha) \mid \\
& =\ln |\csc (\alpha)+\cot (\alpha)| \\
& =\ln \left|\frac{1+\cos (\alpha)}{\sin (\alpha)}\right| \\
& =\underline{\ln (4+\sqrt{1} 5)}
\end{aligned}
$$

$\underline{d_{\mathbf{H}}\left(\ell_{2} \ell_{3}\right)}$

ϕ determined by $\left|-14-e^{i \phi}\right|+1=14^{2}$

$$
14^{2}+14 e^{i \phi}+14 e-i \phi+2=0
$$

$$
\begin{aligned}
28 \cos (\phi) & =-2 \\
\cos (\phi) & =\frac{-1}{14} \\
\sin (\phi)=\frac{\sqrt{195}}{14} &
\end{aligned}
$$

(so ϕ is a bit more than $\frac{\pi}{2}$, as indicated by the picture)
$r=\mid-14-e^{i \phi}=\sqrt{(14+\cos (\phi))^{2}+\sin ^{2}(\phi)}=\sqrt{195}$

$$
\begin{aligned}
d_{\mathbf{H}}\left(\ell_{2} \ell_{3}\right) & =\int_{\beta}^{\frac{\pi}{2}} \frac{1}{\sin (t)} d t \\
& =\ln \left|\csc \left(\frac{\pi}{2}\right)-\cot \left(\frac{\pi}{2}\right)\right|-\ln |\csc \beta-\cot \beta| \\
& =-\ln \left|\frac{1-\cos (\beta)}{\sin (\beta)}\right| \\
& =\ln \left|\frac{\sin (\beta)}{1-\cos (\beta)}\right| \cos (\beta)=\frac{\sqrt{195}}{14} \sin (\beta)=\frac{1}{14} \\
& =\ln \left|\frac{1}{14-\sqrt{195}}\right|=\ln (14+\sqrt{195})
\end{aligned}
$$

Note that since $d_{\mathbf{H}}\left(\ell_{1} \ell_{2}\right)=0$ but $\ell_{1} \neq \ell_{2}$, this cannot be a metric on the set of subsets of \mathbf{H}.

