
QUESTION

(a) Sketch the region defined by the inequalities x2 + y2 ≤ x, 0 ≤ z ≤ 3. If
the region is occupied by a solid whose density at the point (x, y, z) is
x2 + y2 + z calculate its total mass by means of an appropriate triple
integral.

(b) A cube having side length 2 has density at a point given by twice the
square of its distance from the center of the cube. Find the mass of the
cube.

ANSWER
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(b) The cube consists of eight identical octants so its mass is given by
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