QUESTION

Find the vector equation of the plane Π_{1} which passes through the points $L=(1,1,0), M=(1,-2,2)$ and $N=(3,0,3)$. What is the equation of the plane in terms of x, y, z coordinates?
A second plane Π_{2} is parallel to Π_{1} and passes through the point $Q=(1,1,1)$. Find the equation of Π_{2} in terms of x, y, z coordinates.
Give the parametric equation for the line ℓ through the point Q orthogonal to Π_{1}, and find the point A where it intersects the plane Π_{1}. Write down the vector joining the point L to A, and verify that this is orthogonal to the line ℓ.
ANSWER

$$
\begin{gathered}
\mathbf{u}=L \vec{M}=\left(\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right), \mathbf{v}=\overrightarrow{L N}=\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right) \\
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -3 & 2 \\
2 & -1 & 3
\end{array}\right|=-7 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k}=\left(\begin{array}{c}
-7 \\
4 \\
6
\end{array}\right)
\end{gathered}
$$

so the equation of Π_{1} is $\left(\begin{array}{c}-7 \\ 4 \\ 6\end{array}\right) \cdot \mathbf{w}=\left(\begin{array}{c}-7 \\ 4 \\ 6\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=-3$
In co-ordinates this is $-7 x+4 y+6 z=-3$.
Π_{2} has equation $-7 x+4 y+6 z=3$. ℓ has equation $(1,1,1)+t(-7,4,6)$ or $(x, y, z)=(1-7 t, 1+4 t, 1+6 t)$ This point lies in $\Pi_{1} \Leftrightarrow-7(1-7 t)+4(1+$ $4 t)+6(1+6 t)=-3 \Leftrightarrow-7+4+6+3=(-49-16-36) t$ i.e. $t=\frac{-6}{101}$ hence $A=\left(\frac{143}{101}, \frac{77}{101}, \frac{65}{101}\right)$.
$\overrightarrow{L A}$ is orthogonal to $\ell \Leftrightarrow \overrightarrow{L A} .(\mathbf{u} \times \mathbf{v})=0$
$\overrightarrow{L A}=\left(\frac{42}{101},-\frac{24}{101}, \frac{65}{101}\right)^{T}, \overrightarrow{L A} .\left(\begin{array}{c}-7 \\ 4 \\ 6\end{array}\right)=-284-96+390=0$.

