Question

Hint: In this question make sure you use radians for input to trigonometric functions.
Calculate to 4 decimal places of accuracy,

$$
J=\int_{0}^{1} \frac{e^{x} \sin x}{1+x^{2}} d x
$$

by using,
(i) the trapezium rule with 5 ordinates;
(ii) Simpson's rule with 5 ordinates.
(iii) Compare your answers with the exact result $J=0.608087 \ldots$, calculating the percentage error in each case.

Answer
(i) Trapezium rule with 5 ordinates:

$$
J \approx \frac{d}{2}\left(y_{1}+2 y_{2}+2 y_{3}+2 y_{4}+y_{5}\right)
$$

$$
5 \text { ordinates } \Rightarrow 4 \text { strips }
$$

$$
\text { Width of strips }=\frac{1-0}{4}=0.25
$$

x	0.00	0.25	0.5	1.75	1.00
y	0	0.29899	0.63235	0.92354	1.14368

$$
\begin{aligned}
I= & \frac{0.25}{2}((0+1.14368) \\
& +2 \times(0.29899+0.63235+0.92354)) \\
= & 0.125(1.14368+3.70976) \\
= & 0.125 \times 4.85344 \\
= & 0.60668 \ldots \\
= & 0.6067 \ldots
\end{aligned}
$$

(ii) Simpson with 5 ordinates
$I \approx \frac{h}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+y_{5}\right)$
Ordinates y_{i} are the same as above (h too).

Hence

$$
\begin{aligned}
I \approx & \frac{0.25}{2}((0+1.14368)+4 \times(0.29899+0.92354) \\
& +2 \times 0.63235) \\
\approx & \frac{0.25}{3}(1.14368+4.89012+1.26470) \\
& =\frac{0.25}{3}[7.29850] \\
& =0.6082
\end{aligned}
$$

(iii) Trap is accurate to $\left|\frac{(0.608087-0.6066)}{0.608087} \times 100\right|=0.24 \%$

Simpson is accurate to $\left|\frac{(0.608087-0.60821)}{0.608087} \times 100\right|=0.02 \%$
Simpson is 10 times better!!

