Question

Write down the proof that if the fixed point p for $f : \mathbf{R} \longrightarrow \mathbf{R}$ has |f'(p)| > 1 then p is a source.

Answer

Choose c with |f'(p)| > c > 1. Since by definition $f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p}$ there is some $N_{\epsilon}(p)$ with $\left|\frac{f(x) - p}{x - p}\right| > c$ for all $x \leq N_{\epsilon}(p), x \neq p$, i.e. |f(x) - p| > c|x - p| for all $x \in N_{\epsilon}(p)$. Thus if $x, f(x), ..., f^{n-1}(x)$ all $\in N_{\epsilon}(p)$ we have $|f^n(x) - p| > c^n|x - p|$ so eventually $f^n(x) \notin N_{\epsilon}(p)$. Therefore p is a source.