QUESTION

Explain why $\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)=0$ (where $\left(\frac{a}{p}\right)$ is the Legendre symbol.) ANSWER
We know $\left(\frac{0}{p}\right)=0$ by definition. We also know that of the $p-1$ non-zero residues $\bmod p$, exactly half of them are squares (viz. those which are even powers of a primitive root), and the rest are non-squares. Thus $\left(\frac{a}{p}\right)=1$ for exactly $\frac{(p-1)}{2}$ values of a with $1 \leq a \leq p-1$, and $\left(\frac{a}{p}\right)=-1$ for the remaining $\frac{(p-1)}{2}$ values.
Hence $\sum_{a=0}^{p-1}\left(\frac{a}{p}\right)$ is a sum consisting of one zero, $\frac{(p-1)}{2}+1$'s and $\operatorname{frac}(p-1) 2-1$'s. Thus it is 0 .

