QUESTION

Decide whether or not the following quadratic equations have solutions. If there are any solutions, find them.
(i) $3 x^{2}+5 x+1 \equiv 0 \bmod 7$.
(ii) $2 x^{2}+3 x+6 \equiv 0 \bmod 11$.

ANSWER
(i) A quadratic congruence $a x^{2}+b x+c \equiv 0 \bmod p$, where p is an odd prime such that $p \nmid a$, has roots if and only iff the discriminant $d=b^{2}-4 a c$ is a square $\bmod p$.
Here $d \equiv 25-4.3 .1 \equiv 13 \equiv-1 \bmod 7$. By Theorem $7.1(\mathrm{v}),-1$ is not a square $\bmod 7$, so our equation has no solutions.
(ii) $2 x^{2}+3 x+6 \equiv 0 \bmod 11$.

Arguing as in (i), $d \equiv 9-2.4 .5 \equiv-39 \equiv 5 \bmod 11$. Now $5 \equiv 16 \equiv 4^{2}$ $\bmod 11$, so here solutions exist.

By multiplying our original equation through by $8(=4 a)$ we obtain $(4 x+3)^{2} \equiv 9-8.6 \equiv 5 \bmod 11$, so on noting that $5 \equiv(\pm 4)^{2} \bmod$ 11 we see that we have two possible solutions, viz. $4 x+3 \equiv 4 \bmod$ 11 and $4 x+3 \equiv-4 \bmod 11$. These simplify to $4 x \equiv 1 \bmod 11$ and $4 x \equiv-7 \equiv 4 \bmod 11$, giving solutions $x \equiv 3$ and $x \equiv 1 \bmod 11$, respectively.
[Other methods of solution are possible - e.g. you may have spotted 1 as a root, and then factorised the equation as $(x-1)(2 x-6) \equiv 0 \bmod$ 11.]

