QUESTION

Decide whether or not the following quadratic equations have solutions. If there are any solutions, find them.

- (i) $3x^2 + 5x + 1 \equiv 0 \mod 7$.
- (ii) $2x^2 + 3x + 6 \equiv 0 \mod 11$.

ANSWER

(i) A quadratic congruence ax² + bx + c ≡ 0 mod p, where p is an odd prime such that p ¼a, has roots if and only iff the discriminant d = b² - 4ac is a square mod p.

Here $d \equiv 25 - 4.3.1 \equiv 13 \equiv -1 \mod 7$. By Theorem 7.1(v), -1 is not a square mod 7, so our equation has no solutions.

(ii) $2x^2 + 3x + 6 \equiv 0 \mod 11$.

Arguing as in (i), $d \equiv 9 - 2.4.5 \equiv -39 \equiv 5 \mod 11$. Now $5 \equiv 16 \equiv 4^2 \mod 11$, so here solutions exist.

By multiplying our original equation through by 8 (= 4a) we obtain $(4x + 3)^2 \equiv 9 - 8.6 \equiv 5 \mod 11$, so on noting that $5 \equiv (\pm 4)^2 \mod 11$ we see that we have two possible solutions, viz. $4x + 3 \equiv 4 \mod 11$ and $4x + 3 \equiv -4 \mod 11$. These simplify to $4x \equiv 1 \mod 11$ and $4x \equiv -7 \equiv 4 \mod 11$, giving solutions $x \equiv 3$ and $x \equiv 1 \mod 11$, respectively.

[Other methods of solution are possible - e.g. you may have spotted 1 as a root, and then factorised the equation as $(x-1)(2x-6) \equiv 0 \mod 11$.]