Question

Suppose \mathcal{M}_1 and \mathcal{M}_2 are two σ -algebras of sets

- i) Is $\mathcal{M}_1 \cup \mathcal{M}_2$ necessarily a σ -algebra?
- ii) Is $\mathcal{M}_1 \cap \mathcal{M}_2$ necessarily a σ -algebra?
- iii) Is $\mathcal{M}_1 \mathcal{M}_2$ necessarily a σ -algebra?

Answer

- i) Let \mathcal{M}_1 be the collection of countable subsets of [0, 1], together with their complements. Then \mathcal{M}_1 is a σ -algebra. Let \mathcal{M}_2 be the collection of countable subsets of [1, 2] together with their complements. Then \mathcal{M}_2 is a σ -algebra, $\mathcal{M}_1 \cup \mathcal{M}_2$ is not a σ -algebra, since it is not closed under unions.
- ii) $\mathcal{M}_1 \cap \mathcal{M}_2$ is a σ -algebra.

 $E\epsilon \mathcal{M}_1 \cap \mathcal{M}_2 \Rightarrow E\epsilon \mathcal{M}_1 \wedge E\epsilon \mathcal{M}_2 \Rightarrow E^C \epsilon \mathcal{M}_1 \wedge E^C \epsilon \mathcal{M}_2 \Rightarrow E^C \epsilon \mathcal{M}_1 \cap \mathcal{M}_2$ $E_i \epsilon \mathcal{M}_1 \cap \mathcal{M}_2 \Rightarrow E_i \epsilon \mathcal{M}_1 \text{ and } E_i \epsilon \mathcal{M}_2 \Rightarrow \bigcup E_i \epsilon \mathcal{M}_1 \cap \mathcal{M}_2$

iii) Let $\mathcal{M}_1 = \mathcal{P}(S)$ then \mathcal{M}_1 is a σ -algebra. Let $\mathcal{M}_2 = \{\phi, S\}$ then \mathcal{M}_2 is a σ -algebra. But $\mathcal{M}_1 - \mathcal{M}_2$ is not a σ -algebra since it does not contain ϕ .