## Question

(i) Find the parabola of the form $A x+B y^{2}+c y+D=0$ through the three points $P_{1}(-1,0), P_{2}(2,1), P_{3}(1,-1)$. Find the vertex and the axis of the parabola and sketch.
(ii) Find a point on intersection of the parabolas

$$
r=\frac{1}{1-\cos \theta} \quad r=\frac{3}{1+\cos \theta}
$$

and find the angle between the tangents to these curves at this point.

## Answer

(i)

$$
\begin{aligned}
A x+B y^{2}+C y+D & =0 \\
\text { So } & =0 \\
2 A+D+C+D & =0 \\
A+B-C+D & =0
\end{aligned}
$$

Choose $A=D=2$ then $B+C=-6, B-C=-4$, so $B=-5$, $C=-1$

So the parabola is

$$
2 x-5 y^{2}-y+2=0
$$

or

$$
\left(y+\frac{1}{10}\right)^{2}=\frac{2}{5}\left(x+\frac{41}{40}\right)
$$



Vertex $=\left(-\frac{41}{40},-\frac{1}{10}\right)$ axis $y=-\frac{1}{10}$
(ii) The parabolas intersect where $\frac{1}{1-\cos \theta}=\frac{3}{1+\cos \theta}$
giving $\cos \theta=\frac{1}{2} \quad \theta= \pm \frac{\pi}{3}$.
When $\cos \theta=\frac{1}{2}, r=2$
So points of intersection are $\left(2, \pm \frac{\pi}{3}\right)$


For $r=\frac{1}{1-\cos \theta} \quad \frac{d r}{d \theta}=-\frac{\sin \theta}{(1-\cos \theta)^{2}}$
$\frac{1}{r} \frac{d r}{d \theta}=-\frac{\sin \theta}{1-\cos \theta}=-\sqrt{3} \quad \tan \phi_{2}=-\frac{1}{\sqrt{3}} \phi_{2}=150^{\circ}$
For $r=\frac{3}{1+\cos \theta} \quad \frac{1}{r} \frac{d r}{d \theta}=\frac{\sin \theta}{1+\cos \theta} \quad \tan \phi_{1}=\sqrt{3} \quad \phi_{1}=60^{\circ}$
So the angle between the tangents is $90^{\circ}$

