QUESTION

- (a) Show that the set $\{x \in \mathbf{R} | x \neq -1\}$ is a group under the operation * defined by a * b = a + b + ab.
- (b) The following table in the (incomplete) Cayley table of a group G of order 8.

*	p	q	r	s	t	u	v	w
p	t	w						
q	u	t						
r			t					
s				t				
t					t			
u								t
v							t	
w						t		

- (i) State the classification of groups of order 8.
- (ii) decide, giving your reasons, which of the groups in your classification is isomorphic to the one defined by the Cayley table above.
- (c) Write down all the possible cycle structures for elements of S_7 , and use this to find all the possible orders for elements of S_7 , giving one example of an element for each possible order. Explain the relationship between cycle structures and conjugacy classes there are in S_7 .

ANSWER

(a) * is a binary operation since $a * b \in \mathbf{R}$ and $a * b = -1 \Leftrightarrow a + b + ab = -1 \Leftrightarrow -(a+1)b(a+1) \Leftrightarrow a = -1$ or b = -1.

* is associative since

$$(a * b) * c = (a + b + ab) + c + ac + bc + abc$$
$$= a(b + c + bc) + ab + ac_+abc$$
$$= a * (b * c)$$

The identity is 0 and the inverse of a, defined by $\frac{-a}{1+a}$ is an element of the set.

- (b) (i) There are 3 abelian groups of order 8, C₂ × C₂ × C₂; C₂ × C₂ and C₈. There are 2 non-abelian groups of order 8, D₈ and the Quaternians.
 - (ii) Since $pq \neq qp$ the group is non-abelian. Since $t^2 = t$, t is the identity element and the group has 5 elements of order 2. It is therefore D_8 .

	cycle structure	order	example
	[7]	7	(1234567)
)	[6]	6	(123456)
	[5, 2]	10	(12345)(67)
	[5]	5	(12345)
	[4,3]	12	(1234)(567)
	[4, 2]	4	(1234)(56)
	[4]	4	(1234)
	[3,3]	3	(123)(456)
	[3, 2, 2]	6	(123)(45)(67)
	[3,2]	6	(123)(45)
	[3]	3	(123)
	[2, 2, 2]	2	(12)(34)(56)
	[2, 2]	2	(12)(34)
	[2]	2	(12)
	[1]	1	(1)(2)(3)(4)(5)(6)(7)

(c)

There is exactly one cycle structure for each conjugacy class so S_7 has 15 conjugacy classes. For example the two elements (1234)(567) and (abcd)(efg) conjugate via the element (1a)(2b)(3c)(4d)(5e)(6f)(7g).