
QUESTION

(a) Let a denote a real number, where −1 < a < 1. Derive the Laurent
expansion
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that is valid for |a| < |z| < ∞.

(b) By writing z = eiθ and equating real and imaginary parts, use the result
in part (a) to derive the formulae
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ANSWER
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(b) Just put eiθ = cos θ + ii sin θ, use De Moivre’s Theorem and equate real
and imaginary parts.
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