QUESTION

(a) Let a denote a real number, where $-1<a<1$. Derive the Laurent expansion

$$
\frac{a}{z-a}=\sum_{n=1}^{\infty} \frac{a^{n}}{z^{n}}
$$

that is valid for $|a|<|z|<\infty$.
(b) By writing $z=e^{i \theta}$ and equating real and imaginary parts, use the result in part (a) to derive the formulae

$$
\sum_{n=1}^{\infty} a^{n} \cos n \theta=\frac{a \cos \theta-a^{2}}{1-2 a \cos \theta+a^{2}},
$$

and

$$
\sum_{n=1}^{\infty} a^{n} \sin n \theta=\frac{a \sin \theta}{1-2 a \cos \theta+a^{2}}
$$

ANSWER
(a) $\frac{a}{z-a}=\frac{a}{z}\left(1-\frac{a}{z}\right)^{-1}$. As $|a|<|z|$, we can write this as $\frac{a}{z}\left(1+\frac{a}{z}+\frac{a}{z} 2+\cdots\right)=$ $\sum_{n=1}^{\infty} \frac{a^{n}}{z^{n}}$.
(b) Just put $e^{i \theta}=\cos \theta+i i \sin \theta$, use De Moivre's Theorem and equate real and imaginary parts.

