QUESTION

(a) Let $f(z)=(z+1) /(z-1)$. Find the Taylor series for $f(z)$ that is valid in the disc $|z|<1$.
(b) find a Laurent series for $f(z)$ that is valid in the annular domain $1<$ $|z|<\infty$.

ANSWER
(a) Write $f(z)=-(1+z)(1-z)^{-1}$. Thus we have

$$
f(z)=-(1+z)\left(1+z+z^{2}+\cdots\right)=-\left(1+2 z+2 z^{2}+2 z^{3}+\cdots\right) .
$$

This is valid if $|z|<1$.
(b) Now write $f(z)=\left(1+\frac{1}{z}\right)\left(1-\frac{1}{z}\right)^{-1}$ Thus we have

$$
f(z)=\left(1+\frac{1}{z}\right)\left(1+z^{-1}+z^{-2}+\cdots\right)=\left(1+2 z^{-1}+2 z^{-2}+\cdots\right) .
$$

This is valid if $|z|>1$.

