Question

Consider the equation

$$
x y^{\prime \prime}-(x+2) y=0 .
$$

(a) Find the first few terms of the solutions as $x \rightarrow+\infty$ by the method of dominant balance.
(b) Show that one solution is exactly $x \exp (x)$, and demonstrate that this is consistent with your answer to part (a).

Answer

$y^{\prime \prime}-\left(1+\frac{2}{x}\right) y=0$
(a) Try ansatz $y \sim e^{\left(\phi_{0}(x)+\phi_{1}(x)+\phi_{2}(x)+\cdots\right)}\left\{\phi_{r}(x)\right\}$
forming an asymptotic sequence as $x \rightarrow+\infty$
$y^{\prime} \sim\left\{\phi_{0}^{\prime}+\phi_{1}^{\prime}+\phi_{2}^{\prime}+\cdots\right\} e^{\left\{\phi_{0}+\phi_{1}+\phi_{2}+\cdots\right\}} \quad x \rightarrow+\infty$
$y^{\prime \prime} \sim\left\{\left(\phi_{0}^{\prime \prime}+\phi_{1}^{\prime \prime}+\phi_{2}^{\prime \prime}+\cdots\right)+\left(p h i_{0}^{\prime}+\phi_{1}^{\prime}+\phi_{2}^{\prime}+\cdots\right)^{2}\right\} e^{\left\{\phi_{0}+\phi_{1}+\phi_{2}+\cdots\right\}}$
$x \rightarrow+\infty$
Substitute into equation and simplify
$\left(\phi_{0}^{\prime \prime}+\phi_{1}^{\prime \prime}+\phi_{2}^{\prime \prime}+\cdots\right)+\left(p h i_{0}^{\prime}+\phi_{1}^{\prime}+\phi_{2}^{\prime}+\cdots\right)^{2}=1+\frac{2}{x}$
Assume $\left\{\phi_{r}^{\prime \prime}(x)\right\}$ and $\left\{\phi_{r}^{\prime}(x)\right\}$ form an asymptotic sequences as $x \rightarrow+\infty$ as well.

First balance

$$
\phi_{0}^{\prime \prime}+\phi_{0}^{2}=1
$$

$\left\{\begin{array}{l}\phi_{0} \phi_{r}^{\prime}=o\left(\phi_{0}^{\prime 2}\right) \\ \phi_{r}^{\prime \prime}=o\left(\phi_{0}^{\prime \prime}\right)\end{array} \quad\right.$ by asymptotic sequences.
The only balance which works is

$$
\phi_{0}^{\prime 2}=1 \Rightarrow \phi_{0}^{\prime \prime}=0=o(1) \quad x \rightarrow+\infty
$$

Therefore $\phi_{0}^{\prime}= \pm 1 \Rightarrow \phi_{0}= \pm x+\underbrace{\text { const }} \sqrt{ } \sqrt{ }$
absorb into arbitrary prefactor of exponential.

Second balance

$$
\phi_{1}^{\prime}
$$

$$
\begin{aligned}
& \left(0+\phi_{1}^{\prime \prime}+\cdots\right)+(\overbrace{ \pm 1}+\phi_{1}^{\prime}+\cdots)^{2}=1+\frac{2}{x} \\
& \quad \Rightarrow \phi_{1}^{\prime \prime}+1 \underbrace{ \pm 2 \phi_{1}^{\prime}}+\phi_{1}^{2}+\cdots \&=1+\frac{2}{x}
\end{aligned}
$$

$\left|2 \phi_{0} \phi_{1}\right| \gg \phi_{1}^{2}$ by asymp. sequence assump.
Therefore $\phi_{1}^{\prime \prime} \pm 2 \phi_{1}^{\prime}=\frac{2}{\mathrm{x}}$

The only balance which works is

$$
\begin{aligned}
& \pm 2 \phi_{1}^{\prime}=\frac{2}{x} \Rightarrow \phi_{1}= \pm \log x \\
& \left(\phi_{1}^{\prime \prime}=\mp \frac{1}{x^{2}}=o\left(\frac{1}{x}\right), x \rightarrow+\infty\right)
\end{aligned}
$$

Third balance:

$$
\begin{aligned}
& (\underbrace{0} \mp \frac{1}{x^{2}}+\phi_{2}^{\prime \prime}+\cdots)+\left(\phi_{0}^{\prime}+\phi_{1}^{\prime}+\phi_{2}^{\prime}+\cdots\right)^{2}=1+2 ? ? \\
& \phi_{0}^{\prime \prime} \\
& (\mp \underbrace{\frac{1}{x^{2}}}+\phi_{2}^{\prime \prime})+(\underbrace{1}+\underbrace{\frac{2}{x}}+\phi_{1}^{\prime 2}+2 \phi_{0}^{\prime} \phi_{2}^{\prime}+\cdots)=1+\frac{2}{x} \\
& \phi_{1}^{\prime \prime}{\phi_{0}^{\prime 2}}_{2 \phi_{0}^{\prime} \phi_{1}^{\prime}}
\end{aligned}
$$

By asymptotic sequence assumptions $\phi_{2}^{\prime \prime}=O\left(\phi_{1}^{\prime \prime}\right)=\mp \frac{1}{x^{2}}$
Thus we have

$$
\mp \frac{1}{x^{2}}+(\phi_{1}^{\prime 2}+\underbrace{2 \phi_{0}^{\prime} \phi_{2}^{\prime}}+\cdots)=0
$$

$\phi_{1}^{\prime} \phi_{2}^{\prime}=o($ all of this) so neglect it
Now we can't make much of a statement about whether ${\phi_{1}^{\prime 2}}^{2}$ dominates $\phi_{0}^{\prime} \phi_{2}^{\prime}$. Why? $\left|\phi_{0}\right|>\left|\phi_{1}\right|>\left|\phi_{2}\right|$, but $\left|p h i_{1}^{2}\right|$ could be $>\left|\phi_{0}^{\prime} \phi_{2}^{\prime}\right|$ if ϕ_{0}^{\prime}, ϕ_{2}^{\prime} is small enough, or $\left|\phi_{1}^{\prime 2}\right|$ could be $<\left|\phi_{0}^{\prime} \phi_{2}^{\prime}\right|$ if ϕ_{0}^{\prime}, ϕ_{2}^{\prime} are large enough.

Thus we should keep both.
$\phi_{1}^{\prime 2}=\frac{1}{x^{2}}, \phi_{0}^{\prime}= \pm 1$
Therefore $\mp \frac{1}{x^{2}}+\frac{1}{x^{2}} \pm 2, \phi_{2}^{\prime}=0$
$\Rightarrow \phi_{2}^{\prime}=0$ or $+\frac{1}{x^{2}}$
$\Rightarrow \phi_{2}^{\prime}=$ const or $-\frac{1}{x}$
The constant value can be absorbed into the exp. prefactor so set const $=0$ without loss of generality.
Therefore pulling everything together, we have
$y \sim A \exp (+x+\log x+0+o(\log x))+B \exp \left(-x-\log x-\frac{1}{x}+o\left(\frac{1}{x}\right)\right) x \rightarrow$
$+\infty$ $+\infty$
$\Rightarrow y \sim A x e^{x+o(\log x)}+\frac{B}{x} e^{-x-\frac{1}{x}+o\left(\frac{1}{x}\right)}, A, B$ consts, $x \rightarrow+\infty$
(b) Set $y=x e^{x}, y^{\prime}=e^{x}(1+x), y^{\prime \prime}=e^{x}(2+x)$

Therefore $x y^{\prime \prime}=x e^{x}(2+x)=(x+2) y$
$\Rightarrow x y^{\prime \prime}-(x+2) y=0 \sqrt{ } \sqrt{ }$
So $y=x e^{x}$ is a solution. This is consistent with (a) as the $\phi_{2}=0$ solution gives this behaviour as $x \rightarrow+\infty$. By careful consideration of boundary data it can be established that $\phi_{r}=0$ for all $r \geq 2$ is an asymptotic solution \Rightarrow an exact one as well.

Moral: asymptotic methods may give the exact result if they truncate at some point.
(\Rightarrow their divergence is intimately linked to the $\sum_{r=0}^{\infty}$ (∞ series) representation)

