Fourier Series and their Applications

The functions $1, \cos x, \sin x, \cos 2 x, \sin 2 x, \cdots$ are orthogonal over $(-\pi, \pi)$.
$\int_{-\pi}^{\pi} \cos m x \cos n x d x=\left\{\begin{array}{cl}0 & m \neq n \\ \pi & m=n \neq 0 \\ 2 \pi & m=n=0\end{array}\right.$
$\int_{-\pi}^{\pi} \cos m x \sin n x d x=0$ for all m, n
$\int_{-\pi}^{\pi} \sin m x \sin n x d x= \begin{cases}0 & m \neq n \\ \pi & m=n \neq 0\end{cases}$
In fact the functions satisfy these relations over any interval $(\alpha, \alpha+2 \pi)$.
Assuming that $f(x)$, defined and integrable in $(-\pi, \pi)$, has an expansion.
$\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos m x+b_{n} \sin n x\right)$
uniformly convergent over $(-\pi, \pi)$
$\int_{-\pi}^{\pi} f(x) d x=\pi a_{0}$
$\int_{-\pi}^{\pi} f(x) \cos n x d x=\pi a_{n}$ therefore $a_{n}+i b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) e^{i n x} d x$
$\int_{-\pi}^{\pi} f(x) \sin n x d x=\pi b_{n}$
These coefficients exist irrespective of whether or not the series converges and is equal to $f(x)$, and they are called the Fourier coefficients.

Sufficient Conditions for convergence
a) If $f(x)$ is differentiable at ξ (or if $\exists m$, such that $\left|\frac{f(x)-f(\xi)}{x-\xi}\right|<m$, $x \epsilon(\xi-h, \xi+h))$ then the fourier series converges at ξ to $f(\xi)$.
b) If $f(x)$ is monotonic in $\xi<x<\xi+h$ and in $\xi-h<x<\xi$ for some $h>0$, then the fourier series converges at ξ to the value $\frac{1}{2}\{f(\xi-0)+f(\xi+0)\}$.

General Range

The range $a \leq x \leq b$ is standardised by substituting $X=\frac{\pi\left(x-\frac{a+b}{2}\right)}{\left(\frac{b-a}{2}\right)}$
then $-\pi<X<\pi$.
The series $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n X+b_{n} \sin n X$
becomes $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos 2 n \pi\left(\frac{2 x-(a+b)}{b-a}\right)+b_{n} \sin 2 n \pi\left(\frac{2 x-(a+b)}{b-a}\right)$
Periodicity of $f(x)$
We suppose that $f(x)$ is represented by the series (when cgt.) for all x, hence since the sum function of the series is periodic, with period 2π, we have $f(x+2 \pi)=f(x)$ which defines $f(x)$ outside the original range.

Fourier Series for $\frac{1}{2}-t \quad(0<t<1)$
First consider the identity

$$
\begin{aligned}
& 1+\sum_{n=1}^{m} e^{n i x}=\frac{e^{(m+1) i x}-1}{e^{i x}-1}=\frac{e^{\left(m+\frac{1}{2}\right) i x}-e^{-\frac{1}{2} i x}}{2 i \sin \frac{1}{2} x} \\
& =\frac{\cos \left(m+\frac{1}{2}\right) x+i \sin \left(m+\frac{1}{2}\right) x-\left(\cos \frac{1}{2} x-i \sin \frac{1}{2} x\right)}{2 i \sin \frac{1}{2} x}
\end{aligned}
$$

Hence for x real $(x \neq 0, \pm 2 \pi, \cdots)$ taking real and imaginary parts:
$R e: 1+\sum_{n=1}^{m} \cos n x=\frac{1}{2}+\frac{1}{2} \frac{\sin \left(m+\frac{1}{2}\right) x}{\sin \frac{1}{2} x}$
or $\frac{1}{2}+\sum_{n=1}^{m} \cos n x=\frac{1}{2} \frac{\sin \left(m+\frac{1}{2}\right) x}{\sin \frac{1}{2} x}$
Im : $-\frac{1}{2} \cot \frac{1}{2} x+\sum_{n=1}^{m} \sin n x=-\frac{1}{2} \frac{\cos \left(m+\frac{1}{2}\right) x}{\sin \frac{1}{2} x}$
Integrate (1) and (2) from x to π
(1): $\frac{1}{2}(\pi-x)-\sum_{n=1}^{m} \frac{\sin n x}{n}=\frac{1}{2} \int_{x}^{\pi} \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t$
(2): $\left[-\log \left(\sin \frac{1}{2} t\right)\right]_{x}^{\pi}+\left[\sum_{n=1}^{m} \frac{-\cos n t}{n}\right]_{x}^{\pi}=-\frac{1}{2} \int_{x}^{\pi} \frac{\cos \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t$

Now suppose $\delta \leq x \leq 2 \pi-\delta$.

Then using the Riemann Lebesgue theorem, we have, letting $m \rightarrow \infty$ in (3) and (4)
$\frac{1}{2}(\pi-x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n}$
$\log \sin \frac{1}{2} x-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}+\sum_{n=1}^{\infty} \frac{\cos n x}{n}=0$
Therefore $\log 2 \sin \frac{1}{2} x=-\sum_{n=1}^{\infty} \frac{\cos n x}{n}$
Alternative Proof of (5) and (6)
$\log (1-\xi)=-\int_{0}^{\xi} \frac{d t}{1-t}$
where we take a cut along the positive real axis in the t-plane from 1 to ∞. The branch of $\log (1-\xi)$ chosen is that which is real when ξ is real, and is one-valued in the cut plane. In particular this vanishes at $\xi=0$
$\frac{1}{1-t}=1+t+\cdots+t^{m-1}+\frac{t^{m}}{1-t}$
therefore $\int_{0}^{\xi} \frac{d t}{1-t}=\sum_{n=1}^{m} \frac{\xi^{n}}{n}+\int_{0}^{\xi} \frac{t^{m}}{1-t} d t$
where the path is taken along the radius $0-\xi$.
DIAGRAM
For all t on the radius through ξ

$$
\begin{array}{rlll}
|1-t| & \geq|\sin \theta| & & \operatorname{Re}(\xi)>0 \\
& \geq & 1 & \text { otherwise }
\end{array}
$$

Hence in all cases $|1-t| \geq \sin \delta$ when $\delta \leq \arg \xi \leq 2 \pi-\delta \quad(0<\delta<\pi)$
Therefore $\left|\int_{0}^{\xi} \frac{t^{m}}{1-t} d t\right|=\left|\int_{0}^{r} \frac{\left(p e^{i \theta}\right)^{m} e^{i \theta}}{1-t} d p\right|$
$\leq \int_{0}^{r} \frac{p^{m}}{|\sin \delta|} d p=\frac{1}{\sin \delta} \frac{r^{m+1}}{m+1} \leq \frac{1}{(m+1) \sin \delta}$

$$
0 \leq r \leq 1
$$

Hence $\lim _{m \rightarrow \infty}\left|\int_{0}^{\xi} \frac{t^{m} d t}{1-t}\right|=0$

$$
\begin{array}{r}
\delta \leq \arg \xi \leq 2 \pi-\delta \\
0 \leq r \leq 1
\end{array}
$$

When $r=1$ the convergence is uniform with respect to θ. Hence we have
$\log (1-\xi)=-\sum_{n=1}^{\infty} \frac{\xi^{n}}{n}$
Where the series converges on $|\xi|=1$ except at $\xi=1$, uniformly in $\delta \leq \arg \xi \leq 2 \pi-\delta$
$\log (1-\xi)=\log |1-\xi|+i \arg (1-\xi)$
$=\log \left(2 \sin \frac{1}{2} \theta\right)-i\left(\frac{\pi}{2}-\frac{\theta}{2}\right)$
Taking real and imaginary parts gives
$\frac{1}{2} \pi-\theta=\sum_{1}^{\infty} \frac{\sin n \theta}{n}$
$\log \left(2 \sin \frac{1}{2} \theta\right)=-\sum_{1}^{\infty} \frac{\cos n \theta}{n}$

$$
0<\theta<2 \pi
$$

Convergence being uniform in $\delta \leq \theta \leq 2 \pi-\delta$.
Fourier Expansion of the Bernoulli polynomials in $0 \leq t \leq 1$. Values of the Bernoulli numbers.
Put $x=2 \pi t$ in $\frac{1}{2}(\pi-x)=\sum_{1}^{\infty} \frac{\sin n x}{n}$
Therefore $t-\frac{1}{2}=-\frac{1}{\pi} \sum_{1}^{\infty} \frac{\sin 2 \pi n t}{n}$

$$
\begin{equation*}
=-2 \sum_{1}^{\infty} \frac{\sin 2 \pi n t}{2 \pi n} \tag{1}
\end{equation*}
$$

$$
0<t<1
$$

Therefore $P_{1}(t)=-2 \sum_{1}^{\infty} \frac{\sin 2 \pi n t}{2 \pi n}$
$P_{2}^{\prime}(t)=P_{1}(t) \quad P_{2}(0)=0$
Therefore $P_{2}(t)=\int_{0}^{t} P_{1}(s) d s$
The series (1) converges uniformly in $\epsilon \leq t \leq 1-\epsilon$
$\int_{\epsilon}^{t} P_{1}(s) d s=-2 \sum_{1}^{\infty} \int_{\epsilon}^{t} \frac{\sin 2 n \pi s}{2 n \pi} d s$
$\epsilon \leq t \leq 1-\epsilon$
$=-2 \sum_{1}^{\infty} \frac{\cos 2 n \pi \epsilon-\cos 2 n \pi t}{(2 n \pi)^{2}}$
The series on the right converges absolutely and uniformly since
$\left|\frac{\cos (2 n \pi t)}{(2 n \pi)^{2}}\right| \leq \frac{1}{(2 n \pi)^{2}}$ and $\sum \frac{1}{n^{2}}$ converges.
Hence $\int_{0}^{t} P_{1}(s) d s=-2 \sum_{1}^{\infty} \frac{1-\cos 2 n \pi t}{(2 n \pi)^{2}}$
$0 \leq t \leq 1$
(using continuity)
Hence $P_{2}(t)=\bar{P}_{2}+2 \sum_{1}^{\infty} \frac{\cos 2 n \pi t}{(2 n \pi)^{2}}$
$\bar{P}_{2}=-2 \sum_{1}^{\infty} \frac{1}{(2 n \pi)^{2}}=\frac{-2}{(2 \pi)^{2}} S_{2}$
Next $P_{3}^{\prime}(t)=P_{2}(t)-\bar{P}_{2}$
Therefore $P_{3}(t)=2 \sum_{1}^{\infty} \frac{\sin 2 n \pi t}{(2 n \pi)^{3}}$
and generally we have
$P_{2 m}(t)-\overline{P_{2 m}}=(-1)^{m-1} 2 \sum_{m=1}^{\infty} \frac{\cos 2 n \pi t}{(2 n \pi)^{2 m}}$
$P_{2 m+1}(t)=(-1)^{m-1} 2 \sum_{m=1}^{\infty} \frac{\sin 2 n \pi t}{(2 n \pi)^{2 m+1}}$
$\overline{P_{2 m}}=(-1)^{m} \frac{2 S_{2 m}}{(2 \pi)^{2 m}}$
We also have
$\frac{\phi_{m}(t)}{m!}=P_{m}(t) \quad m=2,3, \cdots$
$\frac{B_{m}}{(2 m)!}=(-1)^{m} \overline{P_{2 m}}$
For $k \geq 2$ it can be shown that
$1 \leq S_{k} \leq 1+\frac{1}{2^{k-2}}\left(S_{2}-1\right)$
Therefore $S_{k}=1+o(k)$
Also $P_{2 m+1}(t) \sim(-1)^{m-1} \frac{2}{(2 \pi)^{2 m+1}} \sin 2 \pi t$
$P_{2 m}(t) \sim(-1)^{m-1} \frac{2}{(2 \pi)^{m}}(1-\cos 2 \pi t)$
Fourier Series of the Square Wave
We have $\frac{1}{2}(\pi-x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n} \quad 0<x<2 \pi$
Write $y=x-\pi$
$-\frac{1}{2} y=\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n y}{n}$
$-\pi<y<\pi$
$x=2 \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin n x}{n}$
$-\pi<x<\pi$
Write $f(x)=2 \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin n x}{n}$

Graph of $f(x)$ is shown by solid lines.
Graph of $f(x+\pi)$ is shown by broken lines.
Graph of $f(x)-f(x+\pi)$ is shown by dotted lines.
The fourier series of $f(x)-f(x+\pi)$ is then
$2 \sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n x}{n}-2 \sum_{n=1}^{\infty}(-1)^{n-1}(-1)^{n} \frac{\sin n x}{n}$
$=4 \sum_{n=0}^{\infty} \frac{\sin (2 n+1) x}{2 n+1}$
$\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\sin (2 n+1) x}{2 n+1}=\left\{\begin{array}{rr}+1 & 0<x<\pi \\ -1 & -\pi<x<0\end{array}\right.$
Find coefficients by direct integration.
Gibbs' Phenomenon
Write $S_{m}(x)=\frac{4}{\pi} \sum_{n=0}^{m} \frac{\sin (2 n+1) x}{2 n+1}$
$\frac{\pi}{4} \frac{d}{d x} S_{m}(x)=\sum_{n=0}^{m} \cos (2 n+1) x=\frac{\sin (2 m+2) x}{2 \sin x}$
This vanishes in $o<x<\pi$ at $x=\frac{\pi}{2 m+2} \cdots \frac{(2 m+1) \pi}{2 m+2}$
$S_{m}(x)$ is symmetrical about $\frac{\pi}{2}$.
Hence consider the value of S_{m} for $0<x<\frac{\pi}{2}$, and in particular at $x=\frac{\pi}{2 m+2}$, the first max.
$\frac{\pi}{4} S_{m}\left(\frac{\pi}{2 m+2}\right)=\int_{0}^{\frac{\pi}{2 m+2}} \frac{\sin (2 m+2) t}{2 \sin t} d t$
Put $t=\frac{s}{2 m+2}$ then we have
$\frac{\pi}{4} \sin \left(\frac{\pi}{2 m+2}\right)=\frac{1}{2} \int_{0}^{\pi} \frac{\sin s d s}{(2 m+2) \sin \frac{s}{2 m+2}}=\frac{1}{2} \int_{0}^{\pi} \frac{\sin s}{s} \phi\left(\frac{s}{2 m+2}\right) d s$
where $\phi(u)=\frac{u}{\sin u}$.
Now $1 \leq \phi(u) \leq \phi(\delta) \quad 0 \leq u \leq \delta<\pi \quad$ and $0 \leq \frac{s}{2 m+2} \leq \pi 2 m+2$
So $1 \leq \phi\left(\frac{s}{2 m+2}\right) \leq \phi\left(\frac{\pi}{2 m+2}\right)$
$1 \geq \frac{\sin s}{s} \geq 0 \quad$ in $0 \leq s \leq \pi$
Hence $\int_{0}^{\pi} \frac{\sin s}{s} d s \leq \int_{0}^{\pi} \frac{\sin s}{s} \phi\left(\frac{s}{2 m+2}\right) d s$
$\leq \phi\left(\frac{\pi}{2 m+2}\right) \int_{0}^{\pi} \frac{\sin s}{s} d s$
Since $\lim _{m \rightarrow \infty} \phi\left(\frac{\pi}{2 m+2}\right)=1$ we have
$\lim _{m \rightarrow \infty} \int_{0}^{\pi} \frac{\sin s}{s} \phi\left(\frac{s}{2 m+2}\right) d s=\int_{0}^{\pi} \frac{\sin s}{s} d s$
Hence $\lim _{m \rightarrow \infty} S_{m}\left(\frac{\pi}{2 m+2}\right)=\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin s}{s} d s \approx 1.179>1$
Dirichlet's Formula (sufficient conditions for convergence)
Assume that $f(x)$ is bounded and integrable over $[-\pi, \pi]$, and
$f(x+2 \pi)=f(x)$
Write $S_{m}(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{m}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
$=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\left[\frac{1}{2}+\sum_{n=1}^{m}(\cos n t \cos n x+\sin n t \sin n x)\right] d t$
$=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\left[\frac{1}{2}+\sum_{n=1}^{m} \cos n(t-x)\right] d t$
$=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \frac{\sin \left(m+\frac{1}{2}\right)(t-x)}{\sin \frac{1}{2}(t-x)} d t$
$=\frac{1}{2 \pi} \int_{-\pi-x}^{\pi-x} f(x+s) \frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{1}{2} s} d s$
$=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x+s) \frac{\sin \left(m+\frac{1}{2}\right) s}{\sin \frac{1}{2} s} d s$
by periodicity
$=\frac{1}{2 \pi} \int_{0}^{\pi}[f(x+t)+f(x-t)] \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t \quad$ as $\frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t}$ is even.

Since $\frac{1}{2}+\sum_{n=1}^{m} \cos n x=\frac{\sin \left(m+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x}$,
$\frac{1}{2} \pi=\int_{0}^{\pi} \frac{\sin \left(m+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x} d x$
Therefore $\frac{1}{2}[f(x+0)+f(x-0)]=\frac{1}{2 \pi} \int_{0}^{\pi}[f(x+0)+f(x-0)] \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t}$
Therefore $S_{m}(x)-\frac{1}{2}[f(x+0)+f(x-0)]$

$$
\begin{align*}
= & \frac{1}{2 \pi} \int_{0}^{\pi}[f(x+t)-f(x+0)] \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t \\
& +\frac{1}{2 \pi} \int_{0}^{\pi}[f(x-t)-f(x-0)] \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t \tag{1}
\end{align*}
$$

When $f(x+0)=f(x-0)=f(x) \quad$ (1) becomes
$S_{m}(x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi}[f(x+t)+f(x-t)-2 f(x)] \frac{\sin \left(m+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} d t$
The integrals appearing in (1) and (1a) are all of the form
$\int_{a}^{b} \phi(t) \sin \lambda t d t$ where $a=0, b=\pi, \lambda=m+\frac{1}{2}$
$\phi(t)=\frac{f(x+t)-f(x+0)}{\sin \frac{1}{2} t}, \frac{f(x-t)-f(x-0)}{\sin \frac{1}{2} t}$, or
$\frac{f(x+t)+f(x-t)-2 f(x)}{\sin \frac{1}{2} t}$
Hence if $\phi(t)$ is bounded and integrable over $[0, \pi]$, then by the Riemann Lebesgue theorem, $\int_{0}^{\pi} \phi(t) \sin \lambda t \rightarrow 0$ as $\lambda \rightarrow \infty$.
In fact in the above cases $\phi(t)$ is bounded and integrable over $[h, \pi] h>0$ and so the convergence depends only on the behaviour of the function in a sufficiently small interval $[0, h]$.

Integration of a Fourier Series
If $f(x)$ is bounded and integrable in $[-\pi, \pi]$ and $F(x)=\int_{-\pi}^{\pi}\left(f(t)-\frac{1}{2} a_{0}\right) d t$ Where $\frac{1}{2} a_{0}=\bar{f}$ is the constant term in the Fourier series for f, then $F(x)$ has a Fourier series, convergent everywhere to $F(x)$, obtained by integrating the Fourier series for $f(x)-\frac{1}{2} a_{0}$ term by term. [This holds even if the Fourier series for f does not converge.]
$F(x)$ is an absolutely continuous function and hence possesses a Fourier series converging everywhere to $F(x)$.
$F(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n x+B_{n} \sin n x\right)$
Assuming that f is continuous on $(-\pi, \pi)$ ensures the existence of $F^{\prime}(x)$, and

$$
\begin{array}{rlr}
A_{n} & =\frac{1}{\pi} \int_{\pi}^{\pi} F(x) \cos n x d x \quad n=1,2, \cdots \\
& =\frac{1}{\pi}\left[F(x) \frac{\sin n x}{n}\right]_{-\pi}^{\pi}-\frac{1}{n} \frac{1}{\pi} \int_{-\pi}^{\pi} F^{\prime}(x) \sin n x d x & \\
& =0-\frac{1}{n \pi} \int_{-\pi}^{\pi}\left(f(x)-\frac{1}{2} a_{0}\right) \sin n x d x & {[F(\pi)=F(-\pi)=0]} \\
& =-\frac{1}{n \pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=-\frac{b_{n}}{n} &
\end{array}
$$

Similarly $B_{n}=\frac{a_{n}}{n}$
Therefore $F(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}-\frac{b_{n}}{n} \cos n x+\frac{a_{n}}{n} \sin n x$
Putting $x=\pi$ gives $\frac{1}{2}\left(a_{0}\right)=\sum_{n=1}^{\infty} \frac{b_{n}}{n}(-1)^{n}$
Therefore $F(x)=\sum_{n=1}^{\infty} \frac{a_{n} \sin n x+b_{n}\left((-1)^{n}-\cos n x\right)}{n}$

$$
=\sum_{n=1}^{\infty} \int_{-\pi}^{x}\left\{a_{n} \cos n t+b_{n} \sin n t\right\} d t
$$

Differentiation of a Fourier Series
This is not always valid.
e.g. $\sum_{n=1}^{\infty} \frac{\sin n x}{n}=\frac{1}{2}(\pi-x) \quad 0 \leq x \leq 2 \pi$
$\sum_{n=1}^{\infty} \frac{d}{d x} \frac{\sin n x}{n}=\sum_{n=1}^{\infty} \cos n x \quad$ which does not converge.
Sufficient Conditions
If $f(x)$ is continuous and $f^{\prime}(x)$ exists except at a finite number of points, and both $f(x)$ and $f^{\prime}(x)$ have Fourier series which converge, then the series for $f^{\prime}(x)$ is obtained by term by term differentiation of the Fourier series for $f(x)$.
i.e. $f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x$
$\Rightarrow \frac{1}{2}\left[f^{\prime}(x+0)+f^{\prime}(x-0)\right]=\sum_{n=1}^{\infty} n b_{n} \cos n x-n a_{n} \sin n x$
[This is really just the same as the result for integration, with slightly weaker conditions.]

Half-Range Series

Let $f(x)$ be bounded and integrable in $[0, \pi]$
(1) Cosine Series
define $f_{c}(x)=\left\{\begin{array}{lr}f(x) & 0 \leq x \leq \pi \\ f(-x) & -\pi \leq x \leq 0\end{array}\right.$
Then $f_{c}(x)$ is an even function, which has a Fourier series in which $b_{n} \equiv 0$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f_{c}(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} f_{c}(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x
\end{aligned}
$$

(2) Sine Series
define $f_{s}(x)=\left\{\begin{array}{lr}f(x) & 0<x<\pi \\ -f(-x) & -\pi<x<0\end{array}\right.$
If $f(0) \neq 0 \quad f_{s}$ is discontinuous at 0 .
If $f(\pi) \neq 0 \quad f_{s}$ is discontinuous at π.
Then $f_{s}(x)$ is an odd function, and has a Fourier series in which $a_{n} \equiv 0$
$b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{s}(x) \sin n x d x$
$=\frac{2}{\pi} \int_{0}^{\pi} f_{s}(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$

Order of magnitude of Fourier coefficients
$a_{n}-i b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=c_{n}$
Suppose $f(x)$ and all its derivatives are bounded and continuous in $\left(-\pi, \alpha_{1}\right),\left(\alpha_{1}, \alpha_{2}\right) \cdots\left(\alpha_{k}, \pi\right)$
Write $c_{n}^{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{(m)}(x) e^{-i n x} d x$

$$
\begin{equation*}
=\frac{1}{\pi} \sum_{0}^{k} \int_{-\alpha_{r}}^{\alpha_{r+1}} f^{(m)}(x) e^{-i n x} d x \tag{2}
\end{equation*}
$$

Integrating (1) by parts gives

$$
\begin{aligned}
& \pi c_{n}= \\
& =\pi c_{n}^{0}=\sum_{r=0}^{k}\left[-\frac{f(x)}{i n} e^{-i n x}\right]_{\alpha_{r}}^{\alpha_{r+1}}+\frac{1}{i n} \int_{\alpha_{r}}^{\alpha_{r+1}} f^{\prime}(x) e^{i n x} d x \\
& =\frac{1}{i n}\left[\sum_{r=0}^{k} f\left(\alpha_{r}+0\right) e^{-i n \alpha r}-f\left(\alpha_{r+1}-0\right) e^{-i n \alpha_{r+1}}+\int_{\alpha_{r}}^{\alpha_{r+1}} f^{\prime}(x) e^{-i n x} d x\right] \\
& \left.\quad+\sum_{r=1}^{k}\left\{f\left(\alpha_{r}+0\right)-f\left(\alpha_{r}-0\right)\right\} e^{-i n \alpha_{r}}+\pi c_{n}^{(1)}\right] \\
& \begin{aligned}
& f(-\pi+0)=f(\pi+0) \text { by periodicity } \\
& \text { Therefore } f(-\pi+0) e^{i n \pi}-f(\pi-0) e^{-i n \pi} \\
& \quad= {[f(\pi+0)-f(\pi-0)] e^{-i n \pi}=\left[f\left(\alpha_{k+1}+0\right)-f\left(\alpha_{k+1}-0\right)\right] e^{i n \alpha_{k+1}} }
\end{aligned}
\end{aligned}
$$

Hence we have
$\pi c_{n}^{(0)}=\frac{\pi c_{n}^{(1)}}{n i}+\frac{1}{n i} \sum_{r=1}^{k+1}\left\{f\left(\alpha_{r}+0\right)-f\left(\alpha_{r}-0\right)\right\} e^{-i n \alpha_{r}}$
Write $J_{n}^{(m)}=\frac{1}{\pi} \sum_{r=1}^{k+1}\left\{f^{(m)}\left(\alpha_{r}+0\right)-f^{(m)}\left(\alpha_{r}-0\right)\right\} e^{-i n \alpha_{r}}$
Therefore $c_{n}^{(0)}=\frac{c_{n}^{(1)}}{n i}+\frac{J_{n}^{(0)}}{n i}$
Similarly $c_{n}^{(1)}=\frac{c_{n}^{(2)}}{n i}+\frac{J_{n}^{(1)}}{n i}$
Therefore $c_{n}^{(0)}=\frac{J_{n}^{(0)}}{n i}+\frac{J_{n}^{(1)}}{(n i)^{2}}+\frac{c_{n}^{(2)}}{(n i)^{2}}$
Since $c_{n}^{(2)}=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime \prime}(x) e^{-i n x} d x$ is bounded,
if $J_{n}^{(0)}=0$ for all $n \geq m$ then $c_{n}=c_{n}^{(0)}$ is $O\left(\frac{1}{n^{2}}\right)$ as $n \rightarrow \infty$
If also $J_{n}^{(1)}=0$ for all $n \geq m$ then $c_{n}=c_{n}^{(0)}$ is $O\left(\frac{1}{n^{3}}\right)$ as $n \rightarrow \infty$
In particular if $f, f^{(1)}, \cdots f^{(r)}$ are continuous but $f^{(r+1)}$ is not continuous then $c_{n}=O\left(\frac{1}{n^{r+2}}\right)$ as $n \rightarrow \infty$
In fact $J_{n}^{(0)}$ vanishes only if f is continuous for if we write
$f\left(\alpha_{r}+0\right)-f\left(\alpha_{r}-0\right)=j_{r}$ then $\pi J_{n}^{(0)}=\sum_{r=1}^{k+1} j_{r} e^{-i n \alpha_{r}}$.
If $J_{n}^{(0)}=0$ for $n \geq m$ then
$\sum_{r=1}^{k+1} j_{r} e^{-i n \alpha_{r}}=0 \quad n=m, m+1, \cdots$
Taking $n=m, m+1, \cdots, m+k$, we write $e^{-i \alpha_{r}}=z_{r}$
Therefore $\left(\begin{array}{cccc}z_{1}^{m} & z_{2}^{m} & \cdots & z_{k+1}^{m} \\ \vdots & & & \\ z_{1}^{m+k} & z_{2}^{m+k} & \cdots & z_{k+1}^{m+k}\end{array}\right)\left(\begin{array}{c}j_{1} \\ \vdots \\ j_{k+1}\end{array}\right)=0$
The determinant of the matrix is
$\left(z_{1} z_{2} \cdots z_{k+1}\right)^{m}\left|\begin{array}{ccc}1 & \cdots & 1 \\ z_{1} & \cdots & z_{k+1} \\ \vdots & & \\ z_{1}^{k} & \cdots & z_{k+1}^{k}\end{array}\right|=\left(z_{1} z_{2} \cdots z_{k+1}\right)^{m} \prod_{r>s}\left(z_{r}-z_{s}\right)$
$z_{r}-z_{s} \neq 0$ for $r \neq s$
Therefore the determinant is non zero.
Therefore $j_{1}=j_{2}=\cdots=j_{k+1}=0$
Therefore f is continuous.
Parseval's Theorem
If $f(x)$ is bounded and integrable in $(-\pi, \pi)$
then $\frac{1}{\pi} \int_{-\pi}^{\pi}(f(x))^{2} d x=\frac{1}{2} a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$.
[Note that this is true even though $f(x)$ does not equal the sum of its Fourier series.]
If we assume that $f(x)$ is continuous and the Fourier series converges to $f(x)$, $\frac{1}{n} \int_{-\pi}^{\pi} f^{2}(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\left[\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)\right] d x$
Since uniformity of convergence is not affected by multiplying by $f(x)$ we can integrate term by term

$$
\begin{aligned}
\text { RHS }= & \frac{1}{2} a_{0} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x+\frac{1}{\pi} \sum_{n=1}^{\infty} a_{n} \int_{-\pi}^{\pi} f(x) \cos n x d x+b_{n} \int_{-\pi}^{\pi} f(x) \sin n x d x \\
& =\frac{1}{2} a_{0}^{2}+\sum_{n=1}^{\infty} a_{n}^{2}+b_{n}^{2}
\end{aligned}
$$

