Question

Find the general solution to the differential equation

$$
\dot{\mathrm{x}}=M \mathrm{x} \quad \text { with } \quad \mathbf{x}=\binom{x}{y}
$$

for each of the following matrices M :
1.

$$
M=\left(\begin{array}{ll}
3 & -2 \tag{*}\\
2 & -2
\end{array}\right)
$$

2.

$$
M=\left(\begin{array}{cc}
0 & 1 \\
8 & -2
\end{array}\right)
$$

3.

$$
M=\left(\begin{array}{cc}
3 & -5 \tag{*}\\
2 & 1
\end{array}\right)
$$

4.

$$
M=\left(\begin{array}{cc}
3 & -1 \tag{*}\\
1 & 1
\end{array}\right)
$$

Answer

1.

$$
\dot{\mathbf{x}}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \mathbf{x} \quad \text { so try } \quad \mathbf{x}=\mathbf{x}_{0} e^{\lambda t}
$$

Hence we need $(M-\lambda I) \mathbf{x}_{0}=0$ which implies find λ so that $|M-\lambda I|=$ 0
(or else $\mathbf{x}_{0}=\mathbf{0}$).
$\left|\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=0$ implies $\left|\left(\begin{array}{cc}3-\lambda & -2 \\ 2 & -2-\lambda\end{array}\right)\right|=0$.
$(3-\lambda)(-2-\lambda)+4=0$ so that $\lambda^{2}-\lambda-2=0$ hence $\lambda=2,-1$
For $\lambda=2$ we must find $\mathbf{x}_{\mathbf{0}}$.
$(M-\lambda I) \mathbf{x}_{0}=\mathbf{0}$ implies $\left(\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right)-2\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\binom{x_{0}}{y_{0}}=0$
$\left(\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right)\binom{x_{0}}{y_{0}}=\mathbf{0}$ implying $x_{0}=D$ and $y_{0}=D / 2$.
Taking $D=2$, for example gives, $\mathbf{x}_{1}=\binom{2}{1} e^{2 t}$.
For $\lambda=-1$ we must find \mathbf{x}_{0}.
$(M-\lambda I) \mathbf{x}_{0}=\mathbf{0}$ implies $\left(\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right)+\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\binom{x_{0}}{y_{0}}=0$
$\left(\begin{array}{ll}4 & -2 \\ 2 & -1\end{array}\right)\binom{x_{0}}{y_{0}}=\mathbf{0}$ implying $x_{0}=D$ and $y_{0}=2 D$.
Taking $D=1$, for example gives, $\mathbf{x}_{2}=\binom{1}{2} e^{-t}$.
The general solution is therefore given by:
$\mathbf{x}(t)=A\binom{2}{1} e^{2 t}+s\binom{1}{2} e^{-t}$.
Or $\quad x=2 A e^{2 t}+B e^{-t} \quad$ and $\quad y=A e^{2 t}+2 B e^{-t}$.
2.

$$
\dot{\mathbf{x}}=\left(\begin{array}{cc}
0 & 1 \\
8 & -2
\end{array}\right) \mathbf{x} \quad \text { so try } \quad \mathbf{x}=\mathbf{x}_{0} e^{\lambda t}
$$

Hence we need $(M-\lambda I) \mathbf{x}_{0}=0$ which implies find λ so that $|M-\lambda I|=$ 0
$\left|\left(\begin{array}{cc}0 & 1 \\ 8 & -2\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=0$ implies $\left|\left(\begin{array}{cc}-\lambda & 1 \\ 8 & -2-\lambda\end{array}\right)\right|=0$. $\lambda(2+\lambda)-8=0$ so that $\lambda^{2}+2 \lambda-8=0$ hence $\lambda=2,-4$
For $\lambda=2$ we must find $\mathbf{x}_{\mathbf{0}}$.
$(M-\lambda I) \mathbf{x}_{0}=\mathbf{0}$ implies $\left(\left(\begin{array}{cc}0 & 1 \\ 8 & -2\end{array}\right)-2\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\binom{x_{0}}{y_{0}}=0$
$\left(\begin{array}{cc}-2 & 1 \\ 8 & -4\end{array}\right)\binom{x_{0}}{y_{0}}=\mathbf{0}$ implying $x_{0}=D$ and $y_{0}=2 D$.
Taking $D=1$, for example gives, $\mathbf{x}_{1}=\binom{1}{2} e^{2 t}$.
For $\lambda=-4$ we must find $\mathbf{x}_{\mathbf{0}}$.
$(M-\lambda I) \mathbf{x}_{0}=\mathbf{0}$ implies $\left(\left(\begin{array}{cc}0 & 1 \\ 8 & -2\end{array}\right)+\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\binom{x_{0}}{y_{0}}=0$
$\left(\begin{array}{ll}4 & 1 \\ 8 & 2\end{array}\right)\binom{x_{0}}{y_{0}}=\mathbf{0}$ implying $x_{0}=D$ and $y_{0}=-4 D$.
Taking $D=1$, for example gives, $\mathbf{x}_{2}=\binom{1}{-4} e^{-4 t}$.

The general solution is therefore given by:
$\mathbf{x}(t)=A\binom{1}{2} e^{2 t}+B\binom{1}{-4} e^{-4 t}$.
Or $x=A e^{2 t}+B e^{-4 t}$ and $y=2 A e^{2 t}-4 B e^{-4 t}$.
3.

$$
\dot{\mathbf{x}}=\left(\begin{array}{cc}
3 & -5 \\
2 & 1
\end{array}\right) \mathbf{x} \quad \text { so try } \quad \mathbf{x}=\mathbf{x}_{0} e^{\lambda t}
$$

Hence we need $(M-\lambda I) \mathbf{x}_{0}=0$ which implies find λ so that $|M-\lambda I|=$ $\left|\left(\begin{array}{cc}3 & -5 \\ 2 & 1\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=0$ implies $\left|\left(\begin{array}{cc}3-\lambda & -5 \\ 2 & 1-\lambda\end{array}\right)\right|=0$.
$(3-\lambda)(1-\lambda)+10=0$ so that $\lambda^{2}-4 \lambda+13=0$ hence $\lambda=2+3 i, 2-3 i$ For $\lambda=2+3 i$ we must find $\mathbf{x}_{\mathbf{0}}$.
$(M-\lambda I) \mathbf{x}_{0}=\mathbf{0}$ implies $\left(\left(\begin{array}{cc}3 & -5 \\ 2 & 1\end{array}\right)-(2+3 i)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\binom{x_{0}}{y_{0}}=0$
$\left(\begin{array}{cc}1-3 i & -5 \\ 2 & -1-3 i\end{array}\right)\binom{x_{0}}{y_{0}}=\mathbf{0}$ implying $x_{0}=D$ and $y_{0}=(1-3 i) D / 5$.
Taking $D=5$, for example gives, $\mathbf{x}_{1}=\binom{5}{1-3 i} e^{(2+3 i) t}$.
For $\lambda=2-3 i$ we must find $\mathbf{x}_{\mathbf{0}}$.
$(M-\lambda I) \mathbf{x}_{0}=\mathbf{0}$ implies $\left(\left(\begin{array}{cc}3 & -5 \\ 2 & 1\end{array}\right)-(2-3 i)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\binom{x_{0}}{y_{0}}=0$
$\left(\begin{array}{cc}1+3 i & -5 \\ 2 & -1+3 i\end{array}\right)\binom{x_{0}}{y_{0}}=\mathbf{0}$ implying $x_{0}=D$ and $y_{0}=(1+3 i) D / 5$.
Taking $D=5$, for example gives, $\mathbf{x}_{2}=\binom{5}{1+3 i} e^{(2-3 i) t}$.
The general solution is therefore given by:
$\mathbf{x}(t)=A\binom{5}{1-3 i} e^{(2+3 i) t}+D\binom{5}{1+3 i} e^{(2-3 i) t}$.
To get this into the form of a real solution take $A=a_{1}+a_{2} i$ and $B=a_{1}-a_{2} i$ where both a_{1} and a_{2} are real numbers so that B is the complex conjugate of A.
In addition use the fact that $e^{(2-3 i) t}=e^{2 t}(\cos 3 t-i \sin 3 t)$
Thus $\mathbf{x}(t)=a_{1} e^{2 t}\binom{10 \cos 3 t}{2 \cos 3 t+6 \sin 3 t} a_{2} e^{2 t}\binom{10 \sin 3 t}{6 \cos 3 t-2 \sin 3 t}$
Or $\quad x=\left(10 a_{1} \cos 3 t+10 a_{2} \sin 3 t\right) e^{2 t}$
and $\quad y=\left(\left(2 a_{1}+6 a_{2}\right) \cos 3 t+\left(6 a_{1}-2 a_{2}\right) \sin 3 t\right) e^{2 t}$
4.

$$
\dot{\mathbf{x}}=\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right) \mathbf{x} \quad \text { so try } \quad \mathbf{x}=\mathbf{x}_{0} e^{\lambda t}
$$

Hence we need $(M-\lambda I) \mathbf{x}_{0}=0$ which implies find λ so that $|M-\lambda I|=$ $\left|\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=0$
$\left(3-\lambda(1-\lambda)+1=0\right.$ so that $\lambda^{2}-4 \lambda+4=0$ hence $\lambda=2,2$ (repeatedroot) For $\lambda=2$ we must find $\mathbf{x}_{\mathbf{0}}$.
$(M-\lambda I) \mathbf{x}_{0}=\mathbf{0}$ implies $\left(\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)-2\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\binom{x_{0}}{y_{0}}=0$
$\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)\binom{x_{0}}{y_{0}}=\mathbf{0}$ implying $x_{0}=D$ and $y_{0}=D$.
Taking $D=1$, for example gives, $\mathbf{x}_{1}=\binom{1}{1} e^{2 t}$.
Now try $\mathbf{x}_{2}=\left(\mathbf{v}_{0}+\mathbf{x}_{1} t\right) e^{2 t}$ so that
$2\left(\mathbf{v}_{0}+\mathbf{x}_{1} t\right)+\mathbf{x}_{0}=\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)\left(\mathbf{v}_{0}+\mathbf{x}_{1} t\right)$
$2 \mathbf{v}_{0}+\mathbf{x}_{1}-\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right) \mathbf{v}_{0}=\left(\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)-2 I\right) \mathbf{x}_{1} t$
And since \mathbf{x}_{1} satifies the equation given earlier it follows that:
$\left(\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)-2\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right) \mathbf{v}_{0}=\mathbf{x}_{1}$
Hence $\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)\binom{v_{0}}{v_{1}}=\binom{1}{1}$ which givesv $\mathbf{v}_{0}=\binom{1 / 2}{-1 / 2}$.
Hence $\mathbf{x}_{2}=\left(\binom{1 / 2}{-1 / 2}+t\binom{1}{1}\right) e^{2 t}$
The general solution is therefore given by:
$\mathbf{x}(t)=A\left(\binom{1 / 2}{-1 / 2}+t\binom{1}{1}\right) e^{2 t}+B\binom{1}{1} e^{2} t$.
Or $\quad x=(A(2 t+1)+B) e^{2 t} \quad$ and $\quad y=(A(2 t-1)+B) e^{2 t}$.

