Question

i) State Cauchy’s integral formula (expressing f(a) as a certian integral
around a closed curve surrounding a) paying particular attention to the
hypotheses under which the formula holds. State similar formulae for
the nth derivatives £ (a).

Using these formulae, evaluate
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ii) Use (i) to prove that if f is analytic in a region A containing a circle
with centre a and radius R and if | f(z)| < M on « then |f™(a)| < 2.

Deduce Liouville’s theorem that a function that is analytic and bounded
throughout C is a constant function.

If f(2) is analytic throughout C and satisfies for all z with |z| > R an
equality |f(z)| < K|z|2, where K, R are positive real constants, prove
that f(z) is a constant function.

Answer

i) If f(z) is differentiable inside and on a closed contour C, and if a is
inside C, then
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b) The denominator factorises as (z — 2)(2z — 1)?,

so with g(z) = 1==2)
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ii) Using Cauchy’s integral formula and the estimation lemma gives
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If | f(2)| < M for all z then this inequality holds for all R, so ™ (a) =0
for all n.

Thus the Taylor series for f consists just of the constant term and so
f(z) = f(0) for all z. This is Liouville’s theorem.

Let a be an arbitrary point of C. Let C' be a circle of radius r > |al,
with » > R.

On C |f(2)| < Krz
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so |f'(a)] <

Thus f/(a) = 0 for all a, so f is constant.




