Question

i) State Cauchy's integral formula (expressing $f(a)$ as a certian integral around a closed curve surrounding a) paying particular attention to the hypotheses under which the formula holds. State similar formulae for the nth derivatives $f^{(n)}(a)$.

Using these formulae, evaluate
a) $\int_{|z|=1} \frac{\cos z}{z^{3}} d z$
b) $\int_{|z|=1} \frac{e^{z} d z}{4 z^{3}-12 z^{2}+9 z-2}$
ii) Use (i) to prove that if f is analytic in a region A containing a circle γ with centre a and radius R and if $|f(z)| \leq M$ on γ then $\left|f^{(n)}(a)\right| \leq \frac{M n!}{R^{n}}$.
Deduce Liouville's theorem that a function that is analytic and bounded throughout \mathbf{C} is a constant function.
If $f(z)$ is analytic throughout \mathbf{C} and satisfies for all z with $|z|>R$ an equality $|f(z)| \leq K|z|^{\frac{1}{2}}$, where K, R are positive real constants, prove that $f(z)$ is a constant function.

Answer

i) If $f(z)$ is differentiable inside and on a closed contour C, and if a is inside C, then

$$
f(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-a} d z
$$

Also

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} d z
$$

a) with $f(z)=\cos z$

$$
\int_{|z|=1} \frac{\cos z}{z^{3}} d z=\frac{2 \pi i}{2!} f^{\prime \prime}(0)=\pi i(-\cos 0)=-\pi i
$$

b) The denominator factorises as $(z-2)(2 z-1)^{2}$,
so with $g(z)=\frac{e^{z}}{4(z-2)}$
$\int_{|z|=1} \frac{e^{z} d z}{(z-2)(2 z-1)^{2}}=\frac{2 \pi i}{1!} g^{\prime}\left(\frac{1}{2}\right)$
$g^{\prime}(z)=\frac{(z-2) e^{z}-e^{z}}{4(z-2)^{2}}=\frac{(z-3) e^{z}}{4(z-2)^{2}}$
so $g^{\prime}\left(\frac{1}{2}\right)=\frac{-\frac{5}{2} e^{\frac{1}{2}}}{4\left(\frac{3}{2}\right)^{2}}=-\frac{5}{18} e^{\frac{1}{2}}$
so $\int_{|z|=1} \frac{e^{z} d z}{(z-2)(2 z-1)^{2}}=-\frac{5 \pi i}{9} e^{\frac{1}{2}}$
ii) Using Cauchy's integral formula and the estimation lemma gives
$\left|f^{(n)}(a)\right|=\left|\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} d z\right| \leq \frac{n!}{2 \pi} \frac{M}{R^{n+1}} 2 \pi R=\frac{M n!}{R^{n}}$
If $|f(z)| \leq M$ for all z then this inequality holds for all R, so $f^{(n)}(a)=0$ for all n.
Thus the Taylor series for f consists just of the constant term and so $f(z)=f(0)$ for all z. This is Liouville's theorem.
Let a be an arbitrary point of \mathbf{C}. Let C be a circle of radius $r>|a|$, with $r>R$.
On $C|f(z)| \leq K r^{\frac{1}{2}}$
so $\left|f^{\prime}(a)\right| \leq \frac{K r^{\frac{1}{2}}}{r}=\frac{K}{r^{\frac{1}{2}}} \rightarrow 0$ as $r \rightarrow \infty$
Thus $f^{\prime}(a)=0$ for all a, so f is constant.

