Question

Derive the Cauchy-Riemann equations as necessary conditions for the function

$$
f(z)=u(x, y)+i v(x, y), \quad(z=x+i y)
$$

to be differentiable as a function of a complex variable z. State sufficient conditions involving the Cauchy-Riemann equations for f to be differentiable. Hence find the points where the function

$$
f(z)=\left\{\begin{array}{cc}
\frac{x y^{4}-i x^{4} y}{x^{2}+y^{2}} & z \neq 0 \\
0 & z=0
\end{array}\right.
$$

is differentiable.
At the points at which f is differentiable calculate the derivative $f^{\prime}(z)$.

Answer

If f is differentiable at $z=x+i y$,

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{h \rightarrow 0} \frac{u(x+h, y)+i v(x+h, y)-u(x, y)-i v(x, y)}{h} \\
& =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
\end{aligned}
$$

Also

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{k \rightarrow 0} \frac{u(x, y+k)+i v(x, y+k)-u(x, y)-i v(x, y)}{i k} \\
& =\frac{1}{i}\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
\end{aligned}
$$

so $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
Sufficient conditions for differentiability at z are that the Cauchy-Riemann equations should be satisfied at z, and that the partial derivatives should exist in a neighbourhood of (x, y) and be continuous at (x, y).

Now $u=\frac{x y^{4}}{x^{2}+y^{2}} \quad v=\frac{-x^{4} y}{x^{2}+y^{2}}$

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\left(x^{2}+y^{2}\right) y^{4}-x y^{4}(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{6}-x^{2} y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial v}{\partial y} & =\frac{\left(x^{2}+y^{2}\right)\left(-x^{4}\right)+x^{4} y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2} x^{4}-x^{6}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial u}{\partial y} & =\frac{\left(x^{2}+y^{2}\right) 4 x y^{3}-x y^{4}(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{4 x^{3} y^{3}+2 x y^{5}}{\left(x^{2}+y^{2}\right)^{2}} \\
-\frac{\partial v}{\partial x} & =-\frac{\left(x^{2}+y^{2}\right)\left(-4 x^{3} y\right)+x^{4} y(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{4 x^{3} y^{3}+2 x^{5} y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

For the Cauchy-Riemann equations to be satisfied we require

$$
\begin{align*}
y^{6}-x^{2} y^{4} & =y^{2} x^{4}-x^{6} \tag{1}\\
4 x^{3} y^{3}+2 x y^{5} & =4 x^{3} y^{3}+2 x^{5} y \tag{2}
\end{align*}
$$

From (2) $\quad 2 x y^{5}=2 x^{5} y$
so for $x y \neq 0 \quad y^{4}=x^{4} \quad$ i.e. $y= \pm x$
this also satisfies (1).
Now from (1) $\quad x=0 \Rightarrow y=0$ and $y=0 \Rightarrow x=0$
So if $y= \pm x \neq 0$ the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous if $(x, y) \neq(0,0)$, so f is differentiable at $x(1 \pm i)$ for $x \neq 0$.
Now consider $z=0$. Let $z=r e^{i \theta}$.
For $r \neq 0 \quad f\left(r e^{i \theta}\right)=\frac{\left(r^{5} \cos \theta \sin ^{4} \theta-i r^{5} \cos ^{4} \theta \sin \theta\right)}{r^{2}}$
so $\left|\frac{f\left(r e^{i \theta}\right)-f(0)}{r e^{i \theta}-0}\right|=r^{2}\left|\cos \theta \sin ^{4} \theta-i \cos ^{4} \theta \sin \theta\right|$

$$
\leq 2 r^{2} \rightarrow 0 \text { as } r \rightarrow 0
$$

So $f^{\prime}(0)=0$
$f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{y^{2} x^{4}-x^{6}}{\left(x^{2}+y^{2}\right)^{2}}-i \frac{4 x^{3} y^{3}+2 x^{5} y}{\left(x^{2}+y^{2}\right)^{2}}$
so when $x=y \quad f^{\prime}(z)=-i \frac{6 x^{6}}{4 x^{4}}=-i \frac{3}{2} x^{2}$
when $x=-y \quad f^{\prime}(z)=i \frac{6 x^{6}}{4 x^{4}}=i \frac{3}{2} x^{2}$

