
Vector Algebra and Geometry

Multiplying Vectors together

When the algebra of vectors was being developed 100 or more years ago
many different ways of multiplying vectors were investigated. Two ways
have proved most useful. The first, the scalar product, works in all dimen-
sions. The second, the vector product, is an operation particular to three
dimensions.
The inner product (often called the scalar product)
Let a and b be two non-zero vectors, and let θ be the angle between them.
(Note this can be measured by choosing directed line segments ~PA = a, and
~PB = b, because of the properties of parallels this will be independent of
the representatives chosen). We then define the inner product of a and b

(denoted by a · b) by
a · b = |a||b| cos θ
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i) Note that |b| cos θ is the projection of b onto a and |a| cos θ is the
projection of a onto b.

ii) Note that a · b is a number (or scalar).

iii) If a or b is a zero we define a · b = 0

iv) If a · b = 0 but neither a nor b is zero this means that cos θ = 0

i.e. θ = π
2
so a is perpendicular to b.

v) a · a = |a||a| cos 0 = |a|2

vi) The components (a1, a2, a3) of a vector a relative to a basis of unit
vectors u1, u2, u3 are the projections of a on u1, u2, u3. So a1 = a ·u1

etc.
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In the alternative notation if a = xi+ yj+ zk then x = a · i
y = a · j, z = a · k.

We shall first investigate the algebraic properties of this operation.

a) commutative property

a · b = |a||b| cos θ = |b||a| cos θ = b · a

b) distributive properties. We prove these geometrically.

i) a · (b+ c) = a · b+ a · c = (b+ c · a by commutativity).

(Note that the two + signs are different operations).

Choose A, B, C and O so that ~OA = a, ~OB = b, ~BC = c.
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a · (b+ c) = |a| ·ON = |a| · (OM +MN)

= |a| ·OM + |a| ·MN = a · b+ a · c
ii) (ka) · b = k(a · b)
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~OA = a, ~OA′ = ka, ~OB = b by similar triangles ON = kOM

so (ka) · b = ON ·OB = k ·OM ·OB = k(a · b)

c) In terms of components if a = a1i+ a2j+ a3k, b = b1i+ b2j+ b3k then
using the distributive laws.

a · b = (a1i+ a2j+ a3k) · b = a1(i · b) + a2(j · b) + a3(k · b)
= a1b1 + a2b2 + a3b3

If b = a then a · a = |a|2 = a2
1 + a2

2 + a2
3.

d) If we have a numerical equation ax = b and x 6= 0 then x = b
a
. However

we cannot divide vectors in this way. ac = bc, c 6= 0 ⇒ a = b for
numbers but not for vectors. a · b = a · c in the diagram, but b 6= c.
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This means that equations do not necessarily have a unique solution
for example a · x = a · b.
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The distributive law gives a · (x−b) = 0 then either x−b = 0 or x−b

is perpendicular to a. So x−b = c where c is any vector perpendicular
to a and x = b+ c.
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x can be any vector whose projection on a is equal to that of b. i.e.
we get a plane.

Applications

i) Find the angle between the two lines AB and AC where A = (1, 0, 1),
B = (2, 3, 4), and C = (1, 3,−2).
~AB = (2, 3, 4)− (1, 0, 1) = (1, 3, 3)

~AC = (1, 3,−2)− (1, 0, 1) = (0, 3,−3)
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~AB · ~AC = 1 ∗ 0 + 3 ∗ 3 + 3 ∗ −3 = 0

so AB and AC are perpendicular.

To find φ, ~BA = (−1,−3,−3), and ~BC = (1, 3,−2) − (2, 3, 4) =
(−1, 0,−6)
~BA · ~BC = −1 ∗ −1 +−3 ∗ 0 +−3 ∗ −6 = 19 = |BA||BC| cos θ
|BA|2 = 1 + 9 + 9 = 19, |BC|2 = 1 + 0 + 36 = 37,
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so cos θ =
~BA · ~BC

|BA||BC| =
19√
19
√
37
, so θ = 44◦.

ii) Find a unit vector which makes an angle of 45◦ with a = (2, 2,−1) and
an angle of 60◦ with b = (0, 1,−1).
Let u = (x, y, z) be the unknown vector, then we have

a) |u| = 1 so x2 + y2 + z2 = 1

b) u · a = |u||a| cos 45◦ = |a| cos 45◦
2x+ 2y − z = 3√

2
(|a| = 3, cos 45◦ = 1√

2
).

c) u · b = |u||b| cos 60◦ = |b| cos 60◦ y − z = 1√
2

so from b) and c) we obtain

y = −2x+
√
2 z = −2x+ 1

2

√
2

substituting in a) gives

9x2 − 6
√
2x+ 3

2
= 0

so x = 1√
2
or x = 1

3
√

2
we can now find y and z.

Thus there are two solutions to the problem.

u =

(

1√
2
, 0,− 1√

2

)

or u =
(

1

3
√

2
, 4

3
√

2
,− 1

3
√

2

)
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~HA = a, ~HB = b, ~HC = c. Now HA is perpendicular to BC. So
a(c − b) = 0 i.e. a · c = a · b
Also HC is perpendicular to AB so c · (b − a) = 0 i.e. c · b = c · a
so a · b = c · b i.e. b · (c − a) = 0

So HA is perpendicular to AC.

This proves that the three altitudes of a triangle are concurrent (at the
orthocentre).

Notice that the choice of origin H simplifies the calculations.

The Vector Product

This product is defined in three dimensions and we need to use the orientation
of space
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i, j, k in that order form a
right handed system (rotation
i → j clockwise about k).
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i, j, k form a
left handed system (rotation
i → j anti-clockwise about k).

Define the vector a × b, with a and b not parallel or zero, by
a × b = |a||b sin θn̂ where n̂ is a unit vector normal to the plane of a and b

such that a, b, n̂ in that order form a right-handed system.
Define a × b = 0 if a and b are parallel or a or b is zero.
Properties

i)
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|a||b| sin θ is the area of the parallelogram.

ii)

6
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If a, b, n̂ is right-handed, b, a, n̂ is left-handed and b, a, −n̂ is right-
handed.

So b × a = |b||a| sin θ(−n̂) = −a × b

iii) (ka)× b = |ka||b| sin θn̂ if k > 0

= k(a × b)
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iv) If a, b, n̂ is right-handed, and −a, b, n̂ is left-handed, so −a, b, −n̂ is
right-handed.

So (−a)× b = −(a × b)

v) The distributive law

a × (b+ c) = (a × b) + (a × c)

(b+ c)× a = (b × a) + (c × a)

The second follows from the first by changing signs.

This turns out to be rather complicated to prove, but as with the scalar
product we need it to obtain the separate components of a × b.

Firstly we write a = |a|û, so û is a unit vector in the direction of a.

by (iii) a × v = |a|û × v
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so the distributive rule is proved with a being a unit vector.

Now consider the plane Π which is normal to û. We can obtain û × v

as follows:

project v onto Π and rotate the result (v′) through 90◦ clockwise about
u. The result v′′ is û × v. For |v′′| = |v′| = |v| sin θ and v′′ is perpen-
dicular to û and v and û, v, v′′ forms a right-handed set.
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We use this idea to prove the distributive rule.
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(b+ c)′

By the properties of projections, (b+ c)′ = b′ + c′. We have

û × (b+ c) = u × (b+ c)′ = û × (b′ + c′)

(b+ c)′′ = b′′ + c′′

(Rotating the whole parallelogram in the plane Π through 90◦).

This proves the result geometrically if a 6= 0. If a = 0 both sides are
zero.
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This now enables us to find the vector product in component form. We
need the products of the various unit vectors i, j, k. We assemble the
results in a table.

i j k

i 0 k -j
j -k 0 i

k j -i 0

So a × b = (a1i+ a2j+ a3k)× (b1i+ b2j+ b3k)

= (a2b3 − a3b2)i+ (a3b1 − a1b3)j+ (a1b2 − a2b1)k

This can be written in determinantal form as

a × b =

∣

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

vi) Consider now the equation a × x = b (Interpret as position vectors).
This has no solutions unless a is perpendicular to b. If a is perpen-
dicular to b then also x is perpendicular to b, so x lies in the plane
containing a normal to b.

|a||x| sin θ = |b| so |x| sin θ = |b|
|a| = const.

|x| sin θ is the distance from a.

Again there are many solutions.
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As an application of (i) above, consider the triangle ABC with position
vectors a, b and c. The area of triangle ABC is half the magnitude of
~AB × ~AC. So it is half of the magnitude of
(b − a)× (c − a) = (b × c)− (b × a)− (a × c) + (a × a)

= (b × c) + (c × a) + (a × b)
The area is zero iff ABC are collinear, so a condition for ABC to be collinear
is (b × c) + (c × a) + (a × b) = 0

Products of three vectors

Let us consider the two equations in three unknowns

a1x1 + a2x2 + a3x3 = 0 (1)

b1x1 + b2x2 + b3x3 = 0 (2)

we can eliminate x1, x2, and x3 in turn to obtain

(3)
x1

a2b3 − a3b2
=

x2

a3b1 − a1b3
=

x3

a1b2 − a2b1
(= k) -some number.

(Assuming none of the denominators are zero.)
These denominators are just the expressions which appear in the vector prod-
uct. So we consider the above equations vectorially. Suppose we write
a = (a1, a2, a3) b = (b1, b2, b3) x = (x1, x2, x3)
(1) and (2) say, a · x = 0 and b · x = 0
(3) says x = k(a × b)
Thus if a·x = 0 and b·x = 0 then x is parallel to a×b. (Assuming a×b 6= 0

We now consider
a1x1 + a2x2 + a3x3 = k a · x = k

b1x1 + b2x2 + b3x3 = l b · x = l

By eliminating x1 we obtain
(a3b1 − a1b3)x3 + (a2b1 − a1b2)x2 = kb1 − la1

If we write a × b = d = (d1, d2, d3) then this equation is
d2x3 − d3x2 = kb1 − la1

Similarly
d3x1 − d1x3 = kb2 − la2

d1x2 − d2x1 = kb3 − la3

The left-hand sides are the three components of d × x.
The right-hand sides are the three components of kb − la.
So d × x = kb − la
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i.e. (a × b))× x = (a · x)b − (b · x)a
The left-hand side is called a vector triple product. This equation is the
vector triple product identity.
Now consider a solid figure determined by pairs of parallel planes in the same
way as a parallelogram is determined by pairs of parallel lines. Such a solid
is called a parallelepiped.
The area of a parallelogram is the length of a base times the height.
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Similarly the volume of a parallelepiped is equal to the area of a base paral-
lelogram multiplied by the corresponding height.
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Let OP be the perpendicular distance between the parallel planes OBDC
and AB′D′C ′.
Let O be the origin and ABC have position vectors a, b, and c.
Then b × c = area of OBDC · ÔP
|OP | = |a| cos θ
So V = |a||b× c| cos θ = a · (b × c)
This relies on a, b and c being a right-handed system. Since the volume is
independent of the order in which a, b and c are specified we have
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a · (b × c) = b · (c × a) = c · (a × b)
= −a · (c × b) = −b · (a × c) = −c · (b × a)
In component form we have
a · (b × b) = a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)

=
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∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣
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∣

∣

This product is called the scalar triple product.
If the volume is zero then this means that OABC are co-planar and the
condition is a · (b × c) = 0
If OABC are co-planar this means that a, b, and c are linearly dependent.
So a = αb+ βc for example, then
(αb+ βc) · (b × c)
= α(b · (b × c)) + β(c · (b × c))
= α(c · (b × b)) + β(b · (c × c)) by cyclic interchange.
= 0
If we have four points PQRS then if they are co-planar ~PQ, ~PR, ~PS are
co-planar.
So ~PQ · ( ~PR× ~PS) = 0
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