
Vector Algebra and Geometry

Scalar and Vector Quantities

A scalar quantity is some physical quantity with which is associated a mea-
sure of its magnitude, but no idea of spatial direction, examples being mass,
volume, temperature, electrical charge, atmospheric pressure.
A vector quantity is a physical quantity with which is associated a magnitude
and a direction in space, examples being velocity, force, momentum.
Many such quantities combine with a similar law of combination, so that
the same algebra can be used to describe them. Notice that the physical
quantities described above may have other properties than magnitude and
direction. For example a force may have a point of application in many situ-
ations. However we shall be concerned only with abstracting the properties
of magnitude and direction and modelling these.
We shall consider translations or displacements in 2 or 3 dimensions in order
to formulate the idea of a vector, for such a translation in space is completely
characterised by its magnitude and direction. We can think of a translation
as a function which maps each point of space onto another point of space in
a particular way. On a diagram or in space such a translation is completely
specified by giving the image of any one point.
So in the plane if I speak of the translation which maps (1, 2) onto (3, 4) then
we automatically know what happens to every other point in the plane, and
similarly with a translation in 3-space.
If a translation takes A to B we can denote it by ~AB. Such a translation
will map a point P onto a point Q say, so that we might have ~AB = ~PQ.
This will be the case if the line segments AB and PQ have the same length
and direction. We can further characterise the idea of direction by imagining
a directed line segment, so that ~AB = ~PQ if the length of AB equals that of
PQ, AB is parallel to PQ and the sense of AB is the same as that of PQ.
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~AB 6= ~PQ

we sometimes say that
these are anti-parallel.

Notice that ~AB does not stand for the directed line segment. If it did then
clearly ~AB = ~PQ is false as the two line segments are different. Rather ~AB
denotes the translation T which takes A to B. Since T also takes P to Q, T
can also be symbolised by ~PQ.
We shall want to use symbols for vectors indendent of any particular line
segment used to represent such vectors and so we shall use symbols such as
a, b etc. The magnitude of a vector is the distance of the translation, i.e.
the length of any representative line segment. It is called the modulus of the
vector, and is denoted by |a| or just a. In books you will find vectors denoted
by heavy type, and their magnitude using the same letter in ordinary type.
Given a vector a and a vector b we form their sum as follows. Let A be
an arbitrary point in space. Vector a translates A to some point B, so that
a = ~AB. b then translates B to some point C so that b = ~BC. We then
define a+ b = ~AC. This is easily remembered in the form ~AB + ~BC = ~AC.
We use the symbol + only because the algebraic properties correspond to
those of number algebra, as we shall see. It is really translation a followed
by translation b. For if we translate A to B then B to C this has the same
effect as translating A straight to C.
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In a diagram we have
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this is therefore sometimes called the triangle law of addition.
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If we draw
BP = AB
PQ = BC PQ//BC
CQ = AB CQ//AB
then BQ = AC and BQ//AC

so that ~BP + ~BC = ~BQ.
It is therefore also called the parallelogram law of addition.
The reason why vector algebra is useful in applied mathematics is that many
physical quantities are found experimentally to combine according to this
law.
If we let the following system come to equilibrium then we find that the forces
at P measured by the weights and direction of string satisfy the triangle of
forces. The result of w1 and w2 acting on P in the directions shown is equal
and opposite to w3.
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The diagrams below do not reflect the fact that the forces are acting at the
same point. They only reflect the magnitude and direction properties.
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We can see from the diagram that | ~AC| < | ~AB|+ | ~BC|.

If however A, B, C are in line then | ~AC| = | ~AB| + | ~BC|, so generally we
have |a+ b| ≤ |a|+ |b|.

We have a problem if C coincides with A, for then ~AC does not make sense,
there is no direction specified. However to make the algebra work we intro-
duce the idea of a zero vector, 0 corresponding to the identity transformation,
mapping each point to itself. We then have a+ 0 = 0+ a = a for all a.
Also if a = ~AB then ~AB + ~BA = 0, and we write ~BA = −a, by analogy
with numbers.
Since vector addition is a new operation with new objects we need to see
what the algebra is like

i) commutative law of addition
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Consider the parallelogram PQRS where ~PQ = a ~QR = b. Then
~PS = b and ~SR = a. Therefore applying the triangle law to the two
separate triangles PQR andPSR we have a+ b = b+ a.

ii) the associative law of addition
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We can now add any number of vectors in any order we like to get the
same result. ~PR = a+ (b+ c) = (a+ b) + c

iii) subtraction

having already defined −a (negative a) it seems natural to define b−a

to be b + (−a). Denoting this by x we see that b + (−a) = x is
equivalent to x+ a = b.
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So b− a is the solution x of the equation x+ a = b.

Multiplication by a number

In ordinary algebra when we meet an expression like x + x + x + y + y we
abbreviate it to 3x+ 2y. So with vectors we abbreviate a+ a+ a to 3a.
In fact if a = ~PQ = ~QR = ~RS then ~PS = 3a.
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In fact we see that ~PS is a vector with 3 times the magnitude and the same
sense and direction as a. Similarly if we interpret −3a as (−a)+(−a)+(−a)

then from the same diagram we see that −3a = ~SP . We therefore adopt the
following definition.
Given a and any real number k, we define ka as follows

1) |ka| = k|a|

2) The direction of ka is that of a if k > 0.

3) The direction of ka is opposite that of a if k < 0.

4) If k = 0 we define ka = 0.
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Distributive laws

i) (k + l)a = (ka) + (la)

ii) k(a+ b) = (ka) + (kb)

iii) k(la) = (kl)a for all k, l, a, b.

i) suppose k, l are both > 0 and a 6= 0.

then |(k + l)a| = |k + l||a| = (k + l)|a| = k|a|+ l|a| = |ka|+ |la|

Furthermore ka, la and (k+ l)a all have the same direction and sense.
Thus (k + l)a = ka+ la.

There are numerous other cases to consider, with k, l either or both
negative or zero.

ii)
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Let PQR be a triangle with ~PQ = a ~QR = b so ~PR = a+ b.

Let P ′Q′R′ be a triangle with sides parallel to PQR and

~P ′Q′ = ka ~Q′R′ = kb then ~P ′R′ = ka+ kb.

But the triangles PQR and P ′Q′R′ are similar. So | ~PR| = |k|| ~PR| and

so ~P ′R′ = k ~PR thus ka+ kb = k(a+ b).

This does not cover the cases where k, a or b is zero, or where a and
b are parallel.
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iii) left and right-hand sides both represent vectors with the same magni-
tude, direction and sense and so are the same.

Summary

The system V of vectors with the system R of real numbers have operations
of addition and multiplication by a real number defined with the following
properties

a) for all a,bεV a+ bεV (Closure)

b) for all a,b, cεV (a+ b) + c = a+ (b+ c) (Associativity)

c) there exists 0εV, for all aεV a+ 0 = a (0 is an identity)

d) for all aεV there exists bεV a+ b = 0 (b is an inverse for a (b=-a)

e) for all a,bεV a+ b = b+ a (Commutativity)

f) for all kεR, for allaεV kaεV

g) for all k, lεR, for all aεV k(la) = (kl)a

h) for all aεV 1 ∗ a = a

i) for all kεR, for all a,bεV k(a+ b) = (ka) + (kb) (distributive law)

j) for all k, lεR, for all aεV (k + l)a = (ka) + (la) (distributive law)

Notice that we did not include h) in our definition above. We haven’t included
0 ∗ a = a. In fact we can deduce this algebraically from the rules above as
follows.
ka = (0 + k)a = 0a+ ka by j)
add −(ka) to both sides
ka+−(ka) = (0a+ ka) +−(ka)
ka+−(ka) = 0a+ (ka) +−(ka) by b)

0 = 0a+ 0 by d)
0 = 0a by c)

There are many algebraic systems having the above properties. Such a system
is a vector space.
Example
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Let V be the set of arithmetic progressions (a, a+ d, a+2d, a+3d, ...). We
define addition term by term, and multiplication by a real number term by
term, then V has all the properties (a)-(j). i.e. V is an example of a vector
space.
Independence

Consider the three vectors a, b, c, where a = ~PQ, b = ~QR, c = ~RP
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then a + b + c = 0, there is a linear relationship between them. However
it is possible to choose vectors where there is no such relationship. Consider
two vectors a and b. Choose points PQR so that a = ~PQ, b = ~PR.
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Let ~PQ′ = ka and ~PR′ = lb, then ~PS ′ = a+ b and ~PS ′ = ka + lb. By
the parallelogram rule we can see that S, S ′ lie in the plane determined by
PQR. So if c is a vector whose direction is not parallel to this plane then c

will not be of the form ka+ lb. c or any multiple of it cannot be expressed
as a linear combination of a and b. In fact the equation ka + lb +mc = 0

will only be possible if k = l = m = 0. This leads us to frame the following
definitions.
The vectors a1, ..., an are linearly independent if k1a1+k2a2+ ...+knan = 0

only holds with k1 = k2 = ... = kn = 0.
If there is a solution with some of the k’s non zero then the vectors are
linearly dependent. If for example k1 6= 0 then we can write
a1 = −

k2

k1

a2 − ...− kn

k1

an = m2a2 + ...+mnan.
a1 is a linear combination of the vectors a2, ..., an. What we are interested
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in is finding a set of vectors having the property that all other vectors can be
obtained as linear combinations of these vectors. We would naturally look
for a set of independent vectors with this property. Many vector spaces have
a finite set with this property, that they generate the whole space through
linear combinations. Such a set is called a basic set, or a basis. It will not
be unique, but it can be proved that all bases contain the same number of
vectors. This number is called the dimension of the space.
For example, the set of AP’s has dimension 2, with basis
(1, 1, 1, 1, 1, 1, ...) (0, 1, 2, 3, 4, 5, ...)
Components

A vector u is called a unit vector if |u| = 1. If a is any non-zero vector then

there are two unit vectors associated with a, â =
a

|a|
and −â = −

a

|a|
.

Let u = ~OP be a unit vector, and let Π be a plane through 0 perpendicular
to u. Let a be an arbitrary vector not parallel to Π and let a = ~OA (so A is

not in Π). Choose a point Q in Π such that QA is parallel to u, so ~QA = a1u

for some number a1.
Then ~OA = ~OQ+ ~QA
so a = q+ a1u (q = ~OQ)
This gives a decomposition for a. With a fixed unit vector u this decompo-
sition is unique, for if
a = a1u+ q = a′1u+ q′

then (a1 − a′1)u = q′ − q

The LHS is in the direction of u and the RHS is perpendicular u, unless both
are zero, so a1 = a′1 and q = q′.
The number a1 is called the component of a in the direction of u.
Now choose three unit vectors at right angles and call them u1, u2, u3.
Write u1 = ~OL, u2 = ~OM, u3 = ~ON .
Given an arbitrary vector a = OA
we have ~OA = ~OQ+ ~QP + ~PA = a1u1 + a2u2 + a3u3.
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Again the expression is unique, for a2u2 + a3u3 is in the plane OMN .
This means that u1, u2, u3 is a basis, and a1, a2, a3 are called the components
of a (relative to the basis u1, u2, u3)
We can write a = (a1, a2, a3)
Suppose now we have vectors
a = a1u1 + a2u2 + a3u3 b = b1u1 + b2u2 + b3u3

Then by the laws of vector algebra.
a+ b = (a1 + b1)u1 + (a2 + b2)u2 + (a3 + b3)u3

ka = (ka1)u1 + (ka2)u2 + (ka3)u3

i.e. (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)
k(a1, a2, a3) = (ka1, ka2, ka3)
Now it can be verified that the set of all triples with operations defined above
is a vector space. It is therefore isomorphic to the space of displacement
vectors.
Since the three axes are orthogonal, Pythagoras’ theorem gives
OA2 = OQ2 +QP 2 + PA2

|a|2 = a2
1 + a2

2 + a2
3

In place of u1, u2, u3 a notation widely used in three dimensions for three
orthogonal unit vectors is i, j, k, and instead of a1u1 + a2u2 + a3u3, we
commonly use xi+yj+zk. These notations have the disadvantage that they
do not extend to more than 3 dimensions, but in this course we shall be
working in 3 dimensions.
Notice that since the components of a vector are uniquely specified, the
equation a1 = a2 is equivalent to x1 = x2, y1 = y2, z1 = z2. i.e. in 3
dimensions a vector equation is equivalent to three numerical equations.
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Position Vector

Let O be a point fixed in space. The displacement vector ~OP is called the
position vector of the point P (relative to O). If in addition to O we have
three orthogonal unit vectors i, j, k, the standard notation for a position
vector is r so if P has co-ordinates (x, y, z) we have r = xi+ yj+ zk.
We can now combine this idea with that of independence to give us a para-
metric equation for the plane. We have seen that if S ′ is an arbitrary point in
the plane PQR its position vector r can be expressed as r = ~OP+k ~PQ+l ~PR
for some values of the parameters k, l.
In these calculations we use the triangle law in the form
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given ~OP and ~OQ, since ~OP + ~PQ = ~OQ
we have ~PQ = ~OQ− ~OP
Example
Find the parametric equation for the plane through the points
P (1, 2, 3), Q(3, 4, 5), R(−1,−2, 4)
~PQ = (2, 2, 2), ~PR = (−2,−4, 1) so the parametric equations are

r = (1, 2, 3) + k(2, 2, 2) + l(−2,−4, 1)
e.g. k = 2, l = −1 gives
r = (1, 2, 3) + (4, 4, 4) + (2, 4,−1) = (7, 10, 6) a point in the plane.
The Ratio Theorem

Suppose we have fixed points P , Q, and a point X which lies on the line PQ
and which satisfies PX : XQ = k : l
Notice that to specify X we use a sign convention so that X is specified by
the ratio

s s sP X Q

1” 2”
PX : XQ = 1 : 2

s s sX P Q

1.5” 1.5”
PX : XQ = −1 : 2
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Now ~PX = k
l
~XQ and so if P , X, Q have position vectors p, x, q relative to

some O, then

l(x− p) = k(q− x)

(k + l)x = kq+ lp

x =
kq+ lp

k + l

In particular if k = l = 1 then the position vector of the mid point of PQ is

x =
1

2
(p+ q)

Examples

i) The centoid of a triangle.

Let A, B, C, L, M, N have position vectors a, b, c, l, m, n.

Then l = 1

2
(b+ c), m = 1

2
(c+ a), n = 1

2
(a+ b)
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Consider the point G on AL such that AG : GL = 2 : 1. This has
position vector
1

3
(a+ 2l) = 1

3
(a+ b+ c)

also 1

3
(b+ 2m) = 1

3
(a+ b+ c) = 1

3
(c+ 2n)

Thus the point G lies on AL, BM , CN . It is called the centroid of the
triangle. In general if we have points a1, . . . , an we define their centroid
to be 1

n
(a1 + . . .+ an).
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ii)
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Let a, b, c, d be position vectors of A, B, C, D.

p = 1

2
(a+ b) t = 1

2
(c+ d)

The mid-point of PT has position vector 1

4
(a+b+c+d). By symmetry

(or verification) this is also the mid-point of QU and RS. So the lines
joining the mid-points of opposite sides of a tetrahedron are concurrent
at the centroid.

Equations of a line

i) Suppose we are given two points p and q and we want the equation of
a line through P and Q. If R is an arbitrary point on the line then for
some k, l we have

r =
kq+ lp

k + l
=

k

k + l
q+

l

k + l
p

(Note the convention of r for the position vector of a variable point.)

Let
k

k + l
= t then

l

k + l
= (1− t).

So r = tq+ (1− t)p tεR

Note that 0 < t < 1 gives the region between P and Q.

ii) If O is the origin and ~OP = p, ~OQ = q then from the triangle law
~PQ = q− p.

Given

r = tq+ (1− t)p

r = p+ t(q− p)
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If we are given a point A with position vector a and a vector b then
the line through A in direction b has equation r = a+ tb tεR.

iii) Three points A, B, C are collinear. So C lies on the line through A
and B, so for some tεR

c = ta+ (1− t)b

ta+ (1− t)b− c = 0

Notice that the sum of the coefficients is zero.

Now suppose αa+ βb+ γc = 0, with α+ β + γ = 0, and not all three
zero.

Suppose without loss of generality that γ 6= 0, then
α

γ
a+

β

γ
b+ c = 0

so c = −
α

γ
a−

β

γ
b.

Let −
α

γ
= t then −

β

γ
= 1− t since α + β + γ = 0.

i.e. A, B, and C are collinear iff αa+ βb+ γc = 0, with α+ β+ γ = 0
and not all three are zero.

Example
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Suppose BL : LC = λ : 1 CM :MA = µ : 1 AN : NB = υ : 1
In many problems the algebra is simplified by choosing a special origin. In
this case choose C to be the origin and let the position vectors of A and B
be a and b. Then
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M = ma where m =
µ

µ+ 1
L = lb where l =

1

λ+ 1

N =
υb+ a

υ + 1
Let r be the position vector of the point R where AL meets BM .
Since R lies on AL, r = a+ k(lb− a) for some kεR
Since R lies on MB, r = ma+ h(b−ma) for some hεR
So a+ k(lb− a) = ma+ h(b−ma)
a(1− k −m+mh) = b(h− kl)
Now a and b are non-zero and not parallel, so h = kl and 1− k = m(1− h).

So 1− k = m−mkl i.e. k =
1−m

1− lm
lm 6= 1

Thus r = a+
1−m

1− lm
(lb− a) =

m(1− l)a+ l(1−m)b

1− lm
Now n = υb+a

υ+1
and CN passes through R iff n = pr for some pεR

So
1

υ + 1
a+ υυ + 1b = p

(

m(1− l)

1− lm
a+

l(1−m)

1− lm
b

)

Now compare coefficients and eliminate p

⇐⇒ υ =
l(1−m)

m(1− l)
1−m =

1

µ+ 1
1− l =

λ

λ+ 1

⇐⇒ υ =
1

λ+ 1

1

µ+ 1

µ+ 1

µ

λ+ 1

lambda
⇐⇒ λµυ = 1
This result is know as Ceva’s Theorem, and is often written as
BL

LC

CM

MA

AN

NB
= 1

Notice that the configuration can also appear in the form below
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