An Economist’s view of Web Science

Robin Mason

23 February 2009
What is Web Science?

- Multidisciplinary exercise to
 - understand what the Web is
 - engineer its future
 - ensure its social benefit
What is Web Science?

- Multidisciplinary exercise to
 - understand what the Web is
 - engineer its future
 - ensure its social benefit

- Computer Science, Economics, Law, Management, Maths, Sociology . . .
Someone else’s picture
What is Economics?

- Individuals respond to incentives
What is Economics?

- Individuals respond to incentives
- Individual behaviour is *rational*
What is Economics?

- Individuals respond to incentives
- Individual behaviour is *rational*
- Prices are useful to allocate scarce resources
What is Economics?

- Individuals respond to incentives
- Individual behaviour is *rational*
- Prices are useful to allocate scarce resources
- Competitive markets are efficient (but not fair)
What is Economics?

- Individuals respond to incentives
- Individual behaviour is *rational*
- Prices are useful to allocate scarce resources
- Competitive markets are efficient (but not fair)
- Quantitative framework for positive and normative analysis
Economics or computer science?

- Information and search
- Peer production and social computing
- Online markets: eBay v. Yahoo; Google’s click auction, ...
- Platforms and two-sided markets
- Incentives in distributed systems
Example: economics and networks
Some characteristics of networks

<table>
<thead>
<tr>
<th></th>
<th>WWW</th>
<th>Citations</th>
<th>Co-author</th>
<th>Ham Radio</th>
<th>Prison</th>
<th>High School Romance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Nodes</td>
<td>325,729</td>
<td>396</td>
<td>81,217</td>
<td>44</td>
<td>67</td>
<td>572</td>
</tr>
<tr>
<td>Randomness</td>
<td>0.5</td>
<td>0.62</td>
<td>3.5</td>
<td>5.0</td>
<td>590</td>
<td>1000</td>
</tr>
<tr>
<td>Avg. Degree</td>
<td>4.5</td>
<td>5</td>
<td>1.7</td>
<td>3.5</td>
<td>2.7</td>
<td>0.84</td>
</tr>
<tr>
<td>Avg. Clustering</td>
<td>0.11</td>
<td>0.07</td>
<td>0.16</td>
<td>0.06</td>
<td>0.001</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: Characteristics of different social networks
How an economist would think about this

- An individual gets a benefit of b from each direct link
- Gets a benefit of b^2 from each ‘friend of a friend’
- Forming links is costly $c \geq 0$
- 5 individuals who are considering whether to form links
How an economist would think about this

- An individual gets a benefit of b from each direct link
- Gets a benefit of b^2 from each ‘friend of a friend’
- Forming links is costly $c \geq 0$
- 5 individuals who are considering whether to form links
- What networks are efficient?
- What networks will form?
How an economist would think about this

- An individual gets a benefit of b from each direct link
- Gets a benefit of b^2 from each ‘friend of a friend’
- Forming links is costly $c \geq 0$
- 5 individuals who are considering whether to form links
- What networks are efficient?
- What networks will form?
- Depends on b and c
Efficiency

- Very low: “complete” network
- Moderate: star
- Very large: empty network
Equilibrium

- c very low: “complete” network
- c moderate: all sorts of things
- c very large: empty network
Equilibrium

- c very low: “complete” network
- c moderate: all sorts of things
- c very large: empty network

Inefficiency arises because of “free riding”
 - I prefer someone else to incur link cost
 - but everyone thinks like that
 - too few links created
Figure: The star network
Figure: An equilibrium network with moderate costs
The economic theory of networks

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
Economic models can explain 3 key features

- small worlds
- highly clustered
- fat tails

Implication 1: small number of individuals provides majority of benefits
The economic theory of networks

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
- Implication 1: small number of individuals provides majority of benefits
- Implication 2: self-forming networks are inefficient
The economic theory of networks

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
- Implication 1: small number of individuals provides majority of benefits
- Implication 2: self-forming networks are inefficient
- Implication 3: tendency for concentration
The economic theory of networks

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
- Implication 1: small number of individuals provides majority of benefits
- Implication 2: self-forming networks are inefficient
- Implication 3: tendency for concentration
- Implication 4: potential reasons for public policy
Some open questions

- How to measure and model the dynamics of networks?
- How to measure the value of user-generated content?
- Using online data to test models of network formation
- Role for policy in online networks
 - connectivity
 - ownership of data
 - subsidization