COMP6218: Content Caches

Prof Leslie Carr
TheSlashdot effect, also known as slashdotting, occurs when a popular website links to a smaller site, causing a massive increase in traffic...
Slashdotting

- This overloads the smaller site, causing it to slow down or even temporarily become unavailable.

- The name stems from the huge influx of web traffic that would result from the technology news site Slashdot linking to websites.
 - Somewhat like a DDOS effect

- This lecture is about how the Web solves the problem of too many viewers.
Cache

- The **temporary storage** of **frequently accessed data** stored for **rapid access**
- Original data is stored elsewhere – usually somewhere a long way away that is slower and more inconvenient to get access to
 - Reduces access time/latency for clients
 - Reduces bandwidth usage
 - Reduces load on a server
Browser cache

- Cache for a single user / application
Proxy cache

- Cache located close to the clients
 - e.g. University or Internet Service Provider
- Decreases external bandwidth usage
- Decreases network latency

Scale provides the advantage: many users within the ISP may all be asking for the same web pages
HTTP cache-control headers

- Freshness – how long the cached copy stays “fresh” without revisiting the origin server
- Validation – compare the cached copy to the origin document after it stops being “fresh”
- HTTP headers control browser and proxy caches

HTTP/1.1 200 OK
Date: Fri, 30 Oct 1998 13:19:41 GMT
Server: Apache/1.3.3 (Unix)
Cache-Control: max-age=3600, must-revalidate
Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT
ETag: "3e86-410-3596fbbc"
Content-Length: 1040
Content-Type: text/html
Reverse proxy cache

- Cache proxy located closer to the origin web server
- Usually deployed by a Web hosting ISP
- Decreases load on the Web service (database)

Several reverse proxy caches implemented together can form a Content Delivery Network
Content distribution networks

Business Requirement: stream video content to hundreds of thousands of simultaneous users

Obvious Web solution: single, large “mega-server”

- single point of failure
- point of network congestion
- long path to distant clients
- multiple copies of video sent over outgoing link

...this solution *doesn’t work in practice*
Content distribution networks

- **Business Requirement:** stream video content to hundreds of thousands of simultaneous users

- **Working Web Solution:** store/serve many copies of videos at multiple geographically distributed sites (*CDN*)
 - *enter deep:* push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
Content Delivery Networks

Content Delivery Network overview.
CDN: “simple” content access scenario

Bob (client) requests “Transformers 7” video from the NetCinema service http://netcinema.com/

• Link is to http://video.netcinema.com/6Y7B23V
• Video actually stored in CDN at http://KingCDN.com/NetC6y&B23V

Uses DNS creatively to decide which KingCDN distribution server to use
CDN cluster selection strategy

- how does CDN DNS select “good” CDN node to stream to client
 - pick CDN node geographically closest to client
 - pick CDN node with shortest delay (or min # hops) to client (CDN nodes periodically ping access ISPs, reporting results to CDN DNS)

- alternative: let client decide - give client a list of several CDN servers
 - client pings servers, picks “best”
 - Netflix approach
Case study: Netflix

- 30% downstream US traffic in 2011
- owns very little infrastructure, uses 3rd party services:
 - own registration, payment servers
 - Amazon (3rd party) cloud services:
 - Netflix uploads studio master to Amazon cloud
 - create multiple version of movie (different encodings) in cloud
 - upload versions from cloud to CDNs
 - Cloud hosts Netflix web pages for user browsing
 - three 3rd party CDNs host/stream Netflix content: Akamai, Limelight, Level-3
Case study: Netflix

1. Bob manages Netflix account

2. Bob browses Netflix video

3. Manifest file returned for requested video

4. DASH streaming

Upload copies of multiple versions of video to CDNs

Amazon cloud

Akamai CDN

Limelight CDN

Level-3 CDN

Netflix registration, accounting servers
Streaming multimedia: DASH

- **DASH:** Dynamic, Adaptive Streaming over HTTP

- **Server:**
 - divides video file into multiple chunks
 - each chunk stored, encoded at different rates
 - **manifest file:** provides URLs for different chunks

- **Client:**
 - periodically measures server-to-client bandwidth
 - consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)
Streaming multimedia: DASH

- "intelligence" at client: client determines
 - *when* to request chunk (so that buffer starvation, or overflow does not occur)
 - *what encoding rate* to request (higher quality when more bandwidth available)
 - *where* to request chunk (can request from URL server that is “close” to client or has high available bandwidth)
MPEG-DASH structure

http://dashif.org/mpeg-dash/